What’s Cool? - Collective Fashion-like Behavior Emerges from Neuro-psychological Conditioning

Jorge P. F. Simão
{jsimao@di.fct.unl.pt}

Luís Moniz Pereira
{lmp@di.fct.unl.pt}

Centro de Inteligência Artificial – CENTRIA
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829 - 516 Caparica, Portugal
ABSTRACT: We present an agent-based model of the emergence of fashion-like collective behavior, based on a simple abstraction of individuals neuro-psychological conditioning. Our results show that fashion-like collective behavior can emerge from social interaction and the working of individuals’ neuro-psychological mechanisms, within a wide range of plausible assumptions about the levels of social stratification within a population and cognitive inertia.
What do miniskirts, afro haircuts, and body tattoos have in common?

• They are all forms of body accessories that have had a characteristic fashion-like career. They emerge out of obscurity and spread through a population very fast, only to, shortly after they have reached their maximum popularity, vanish again from the cultural landscape, sometimes to surge again long after.

• Current Explanations:

 – Simmel Effect

 – Information cascades

 – Externalities

 – Decay of value

• Our Proposal: Individual Conditioning drives collective behavior
An agent-based model of fashion emergence (1)

Agent attributes:

\[a_i = \langle q_i, t_i, v_i^0, v_i^1 \rangle. \]

Model pseudo-code:

```plaintext
repeat (T) {
    for all agent {
        update trait values;
        switch to most preferred trait;
    }
}
```
An agent-based model of fashion emergence (2)

Trait value update rules:

\[v_i^1(t) = v_i^1(t-1) \cdot \alpha + \frac{1}{N} \sum_{a_j : a_j \in M_i \wedge t_j=1} q_j \cdot (1 - \alpha) \]

\[v_i^0(t) = v_i^0(t-1) \cdot \alpha + \frac{1}{N} \sum_{a_j : a_j \in M_i \wedge t_j=0} q_j \cdot (1 - \alpha) \]

Parameter settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value(s)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>population size</td>
<td>50</td>
<td>small sample</td>
</tr>
<tr>
<td>(N)</td>
<td>number of models</td>
<td>5</td>
<td>small</td>
</tr>
<tr>
<td>(E)</td>
<td>assortment</td>
<td>4</td>
<td>(r \approx 0.75)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1 - learning rate</td>
<td>0.2</td>
<td>fast learning</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>standard deviation</td>
<td>2</td>
<td>cognitive or material</td>
</tr>
<tr>
<td>(D)</td>
<td>delay</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Results (1)

Bit map of trait usage across time ($D = 4$):

Frequency of trait usage across time ($D = 4$):
Results (2) — Deterministic model

Bit map of trait usage across time \((D = 4)\) with deterministic selection of model:

Notes:

- Small deterministic neighborhood changes behavior of model

- Propagation of trait usage / avoidance is more regular

- General Caveat: Spatial analogies of social strata can bias results
Results (3) — Sensitivity Analyses

Bit map of trait usage across time ($D = 10$):

Bit map of trait usage across time ($D = 0$):
Conclusions and Future Work

- Fashion like collective behavior can emerge from individual conditioning

- Model is very sensitive to delay parameter D

- Complex networks of traits may have more complex dynamics

- Models with multi-valued trait may also have more complex dynamics