Mário António Abrantes1 and Luís Moniz Pereira2

1Instituto Politécnico de Bragança, 2CENTRIA, Portugal

INAP13’ September, 2013
Introduction: $MH_p = MH + WFSXp$

2 The MH Abductive Spirit

3 MH Models Computation

4 WFSXp Semantics

5 MH_p Semantics

6 Conclusion
MH\textsubscript{P} is a semantics for extended normal logic programs whose models are total and paraconsistent.

By total and partial Models we mean (normal logic programs case):

\[
P
\begin{align*}
 b & \leftarrow \text{not } d \\
 a & \leftarrow \text{not } a
\end{align*}
\]

\[
Q
\begin{align*}
 b & \leftarrow \text{not } d \\
 c & \leftarrow
\end{align*}
\]

\[
\text{WFM}(P) = \langle \{b\}^+, \{a\}^u, \{d\}^- \rangle : \text{Partial Model}
\]

\[
\text{WFM}(Q) = \langle \{b, c\}^+, \{\}^u, \{d\}^- \rangle : \text{Total Model}
\]
The necessity of Explicit Negation

This is a classic example (due to John McCarthy).

We do not want to cross the railway on basis of lack of a proof the train is coming.

\[\text{cross} \leftarrow \neg \text{train} \]

The adequate way, is to make the train is not coming: we need to be able to assert falsity!

\[\text{cross} \leftarrow \neg \text{train} \]
Sometimes **all the information** must be squeezed from a logic program.

For example, in an **emergency** situation,

```
danger ← not run
run ← not safe
safe ← not danger
```

indecision may not be acceptable. **Eliminate indecision** enforcing a 2-valued semantics.
Total Models via Aductive Semantics (2/2)

Eliminate undecision via a 2-valued semantics.

- Add to P a **minimal set of hypotheses**, H, such that $WFM^u(P \cup H) = \emptyset$.
- **Assumable set of hypotheses**: atoms that **appear default negated**: \{run, danger, safe\}.
- For example, $H = \{run\}$:

\[
P \cup \{run\}
\]

danger \leftarrow not run
safe \leftarrow not danger
run \leftarrow not safe
run \leftarrow

\[
WFM(P \cup \{run\}) = \{run, not \ danger, safe\}
\]
The MH Spirit: the Holiday Problem (1/2)

Four friends are planning a holiday.

- **First friend** says ”If we don’t go to Germany, then we must go to Sweden”
 \[
 \text{sweden} \leftarrow \neg \text{germany}.
 \]
 etc. for the first 3 friends.
- **Fourth friend** says ”We must go to Denmark”
 \[
 \text{denmark} \leftarrow.
 \]

\[
\begin{align*}
\text{sweden} & \leftarrow \neg \text{germany} \\
\text{denmark} & \leftarrow \neg \text{sweden} \\
\text{germany} & \leftarrow \neg \text{denmark} \\
\text{denmark} & \leftarrow
\end{align*}
\]
The MH Spirit: the holiday Problem (2/2)

There is a single stable model solution.

\[\text{SM}(P) = \{ \text{denmark, not germany, sweden} \} \]

But on simple inspection, another solution is devised.

\[\text{SM}(P) = \{ \text{denmark, germany, not sweden} \} \]

Both solutions are obtained if we envisage the loop in the program as a choice device, by considering all the default negated atoms as assumable hypotheses.
The WFM of a logic program may be computed via the remainder of the program.

The remainder is computed by transforming the original program using 5 operations: loop detection, failure, positive reduction, success, negative reduction.

This reduction system is terminating and confluent for finite ground normal logic programs.
Example

- Rules and literals highlighted in program Q, below, are eliminated during remainder computation

- $\text{remainder}(Q) = \hat{Q}$

- $WFM(Q) = WFM(\hat{(Q)}) = \{d, s\} \cup \text{not} \{g, k, u, w\}$.

$u \leftarrow w$

$w \leftarrow u$

$k \leftarrow g$

$s \leftarrow \text{not} \ g, \ d$

$g \leftarrow \text{not} \ d$

$d \leftarrow \text{not} \ s, \ d \leftarrow$

Loop Detection
Loop Detection
Failure
Positive Reduction + Success
Negative Reduction
Negative Reduction
Layered Remainder Computation (1/2)

The **layered remainder** uses the loops as **choice devices**. The key to preserve loops is to replace **negative reduction** by . . .

layered negative reduction: Use fact \(f \) to eliminate a rule \(h \leftarrow \text{not} \ f \) iff the rule is not in loop through \(\text{not} \ f \).

The **layered remainder** is computed by transforming the original program using 5 operations: loop detection, failure, positive reduction, success, **layered negative reduction**.

The model obtained with the layered remainder is the **layered well-founded model**, \(LWFM \).
Layered Remainder Computation (2/2): example

Example of layered remainder computation of program Q below:
- The highlighted rules and literals are eliminated.
- Denote by \hat{Q} the layered remainder of Q.
- $LWFM(Q) = \{d\} \cup \text{not} \{u, w\}$

```
\[ \begin{align*}
  u & \leftarrow w \\
  w & \leftarrow u \\
  k & \leftarrow g \\
  s & \leftarrow \text{not } g, \ d \\
  g & \leftarrow \text{not } d \\
  d & \leftarrow \text{not } s \\
  d & \leftarrow \\
\end{align*} \]
```

Loop Detection
Loop Detection

Success
Form the **assumable hypotheses set** of \(Q \) (default negated atoms that are not facts in \(\hat{Q} \)): \(\{g, s\} \).

Compute all the 2-valued stable models of \(Q \cup H \), for all nonempty minimal hypotheses sets \(H \subseteq \{g, s\} \) and for \(H = \emptyset \).

MH models of \(Q \): \(\{d, \text{not } g, \text{not } k, s\} \) with hypotheses sets \(H = \emptyset \) and \(H = \{s\} \), and \(\{d, g, k, \text{not } s\} \) with hypotheses set \(H = \{g\} \).
Extended logic programs allow two types of negation: **default negation** `not b` and **explicit negation** `¬b`.

WFSXp: well-founded semantics for extended logic programs.
- Collapses into **WFS** for normal logic programs.
- Relates **default negation** and **explicit negation** through the **coherence principle**: if `¬l` holds, then `not l` also does (similarly, if `l` then `not ¬l`).
- **Detects** dependencies on contradiction.
$\neg a$ and $u \leftarrow \text{not } a$ render u true via the \textit{coherence principle}.

Example: WFSXp model

\[
P = \langle \{\neg a, c, u\}^+, \{z, \neg z\}^u, \{a, \neg c, \neg u\}^- \rangle.
\]
WFSXₚ Semantics (3/4)

WFSXₚ may be embedded into WFS by a simple transformation.

- Take an extended program \(P \) and compute the \(P^{t-o} \) transformed of \(P \):

<table>
<thead>
<tr>
<th>(P)</th>
<th>(P^{t-o})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg a)</td>
<td>(\neg a)</td>
</tr>
<tr>
<td>(c) \leftarrow \text{not } b</td>
<td>(c) \leftarrow \text{not } b^o</td>
</tr>
<tr>
<td>(u) \leftarrow \neg a</td>
<td>(u) \leftarrow \neg a</td>
</tr>
</tbody>
</table>

\(\neg a, \neg a^o, \neg c, \neg u \) in \(P^{t-o} \) language are names of atoms, not explicit negations. **Bold** literals enforce the coherence principle.

- Compute the \(WFM(P^{t-o}) \):
\[WFM(P^{t-o}) = \langle \{\neg a, \neg a^o, c, c^o, u, u^o \}^+, \{\}^u \rangle \]

\[\{ a, a^o, b, b^o, \neg b, \neg b^o, \neg c, \neg c^o, \neg u, \neg u^o \}^- \]

- **Read** the \(WFSX_p(P) \) model from \(WFM(P^{t-o}) \)

\[a \in WFM_p(P) \iff a \in WFM(P^{t-o}) \]

\[\text{not } a \in WFM_p(P) \iff \text{not } a^o \in WFM(P^{t-o}) \]

\[\neg a \in WFM_p(P) \iff \neg \neg a \in WFM(P^{t-o}) \]

\[\text{not } \neg a \in WFM_p(P) \iff \text{not } \neg a^o \in WFM(P^{t-o}) \]

\[WFM_p(P) = \langle \{\neg a, c, u \}^+, \{\}^u \{ a, b, \neg b, \neg c, \neg u \}^- \rangle. \]
Computing MH_P Models (1/2)

- Take an extended normal logic program P.
- Compute the transformed P^{t-o}.
- Compute the **balanced layered remainder** bP^{t-o} (for preserving loops) by means of the **balanced reduction system**.

balanced reduction system, consists in 5 operations: loop detection, failure, positive reduction, success, **balanced layered negative reduction**.

balanced layered negative reduction: Use fact f^o (resp. f) to eliminate rule $r = h \leftarrow \text{not } f^o$ (resp. $r^o = h^o \leftarrow \text{not } f$) iff r, r^o are not in loop through $\text{not } f^o, \text{not } f$.

1. Mário António Abrantes
2. Luís Moniz Pereira

An Abductive Paraconsistent Semantics – MH_P
Compute the set of **assumable hypotheses** of P, $\text{Hyps}(P)$: all the literals k such that $\text{not } k^o \in bP^{t-o}$ and k is not a fact of bP^{t-o}.

MHp models: total **WFSXp models** of programs $P \cup H$, for all nonempty minimal hypotheses sets $H \subseteq \text{Hyps}(P)$ and for $H = \emptyset$.
Computing MH_P Models: an example (1/2)

- An extended program P and its balanced layered remainder, bP^{t-o}

<table>
<thead>
<tr>
<th>P</th>
<th>bP^{t-o}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \leftarrow h$</td>
<td>$b \leftarrow h$</td>
</tr>
<tr>
<td>$h \leftarrow \neg p$</td>
<td>$h \leftarrow \neg p^o$</td>
</tr>
<tr>
<td>$p \leftarrow \neg b$</td>
<td>$p \leftarrow \neg b^o$</td>
</tr>
<tr>
<td>$b \leftarrow$</td>
<td>$b \leftarrow$</td>
</tr>
<tr>
<td>$\neg h \leftarrow$</td>
<td>$\neg h \leftarrow$</td>
</tr>
</tbody>
</table>

- Assumable set of hypotheses, $Hyps(P) = \{p\}$: $\neg p^o$ appears in bP^{t-o} and p is not a fact.
Computing MH_P Models: an example (2/2)

- MH_P models of P:

\[
M_1 = \langle \{ b, h, \neg h \}^+, \{ \}^u, \{ \neg b, h, \neg h, p, \neg p \}^- \rangle \\
\quad \text{with hypotheses set } H = \emptyset \\
M_2 = \langle \{ b, p, \neg h \}^+, \{ \}^u, \{ h, \neg b, \neg p \}^- \rangle \\
\quad \text{with hypotheses set } H = \{ p \}
\]

- M_1 is default inconsistent (e.g. h and not h belong to M_1).
- M_2 is consistent: is a solution to this variant of the holiday problem.

Introduction:

\[MH_p = MH + WFSXp \]

The \(MH \) Abductive Spirit

\(MH \) Models Computation

\(WFSXp \) Semantics

\(MH_p \) Semantics

Conclusion

\(MH_p \) is a total models paraconsistent semantics that **solves any** extended normal logic program.

\(MH_p \) models detect dependency on contradiction: objective literals \(L \) that are dependent on contradiction exhibit **default inconsistency**, i.e. both \(L \) and \(notL \) are in the model.

Computing a \(MH_p \) model is a \(\Sigma_2^P \) task.

Belief revision, or contradiction removal is treated elsewhere, in MA’s forthcoming PhD thesis.
THANKS!