Runtime Verification of Agent Properties

Stefania Costantini and Pangiota Tsintza
University of L’Aquila, Italy

Pierangelo Dell’Acqua
Linköping University, Sweden

Luís Moniz Pereira
New University of Lisbon, Portugal

INAP09 - Évora, Portugal - November 2009
Verification of Properties in Agents

• As agent systems are more widely used in real-world applications, the issue of verification is becoming increasingly important:
 - A priori verification: Model Checking & Theorem Proving
 - Dynamic verification: properties verified at runtime

• The two approaches are complementary rather than compete
How to verify in agents that a property φ holds?

Prove that φ holds in any future state of the agent:

- One can verify φ by explicitly examining all possible future states
- One can perform a run-time verification of φ
 and suitable counter-measures can be undertaken in case of violation
Agents’ Abilities

- Agents:
 - software entities
 - interact with each other and with the environment
 - proactive and deliberative capabilities
 - able to learn by observing other agent behavior or by imitation
 - subject to modify themselves and evolve due to external/internal stimuli
Motivation

- Given the evolving nature of learning agents, their behavior has to be checked from time to time and not only a priori.

- Model checking and other a priori approaches are static and need to re-check whenever the agent learns a new piece of information.

- A priori full validation of agents' behavior would have to consider all possible scenarios that are not known in advance.

- These are the reasons why we propose a run-time control on agent behavior and evolution, for checking correctness during agents’ activity, rather than a model checking control.
Agent Model

> Agent Program

- An *agent program* is a tuple $P = \langle BA, MA, C, CI \rangle$ of software components:
 - BA and MA are logic programs (base and meta agent)
 - C is the control component executor specification, e.g. a meta-interpreter
 - CI contains declarative control information directives
Agent Model

> Evolutionary Semantics

- An agent starts from an initial program P_0

- Changes in the environment as well as agent’s own self-modifications are modeled as *program transformation steps*:

 \[
 \langle BA_i, MA_i, C_i, CI_i \rangle \xrightarrow{U(C_i, CI_i, w_i)} \langle BA_{i+1}, MA_{i+1}, C_{i+1}, CI_{i+1} \rangle
 \]

 where U is the *underlying control mechanism* and w_i is the *external environment*
Agent Model

Evolutionary Semantics

- We thus have a Program Evolution Sequence $PE = [P_0, \ldots, P_n]$

- We have a corresponding Semantic Evolution Sequence $ME = [M_0, \ldots, M_n]$ where M_i is the semantic account of P_i according to the specific language and the chosen semantics

- The pair $\langle PE; ME \rangle$ is called the *Evolutionary Semantics* of the agent
Linear-time temporal logic

Future-time connectives

Next state
$X\varphi$ states φ will be true at next state

Always in future
$G\varphi$ means φ will be true in every future state

Sometime in future
$F\varphi$ states there is a future state where φ will be true

Weak until
$\varphi W \psi$ is true in s if ψ is true in t, in the future of s, and φ is true in every state in time interval $[s,t)$

Strong until
$\varphi U \psi$ is true in s if ψ is true in t, in the future of s, and φ is true in every state in time interval $[s,t]

Never
$N \varphi$ states φ should not become true in any future state
• Past-time connectives

Last state
\(\hat{X}\varphi \) states that, if there is a last state, \(\varphi \) was true then

Some time in the past
\(\hat{F}\varphi \) states \(\varphi \) was true in some past state

Always in the past
\(\hat{G}\varphi \) states \(\varphi \) was true in all past states

Weak since
\(\varphi \hat{Z}\psi \) is true in \(s \) if \(\psi \) was true in \(t \) (in the past of \(s \)), and \(\varphi \) was true in every state of time interval \([t,s) \)

Since
\(\varphi \hat{Z}\psi \) is true in \(s \) if \(\psi \) was true in \(t \) (in the past of \(s \)), and \(\varphi \) was true at every state in time interval \([t,s] \)
I-METATEM logic

- Extends METATEM with intervals:

 \[U_{m,n}: \text{strong until in a time interval} \]

 \[\hat{S}_{m,n}: \text{since in a time interval} \]

- Formulae of I-METATEM are defined as:

 \[
 \varphi ::= p \mid \text{true} \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid \tau(i)
 \]

 \[
 \varphi ::= X\varphi_1 \mid \varphi_1 U\varphi_2 \mid \hat{X}\varphi_1 \mid \varphi_1 \hat{S}\varphi_2
 \]

 \[
 \varphi ::= \varphi_1 U_{m,n} \varphi_2 \mid \varphi_1 \hat{S}_{m,n} \varphi_2
 \]

 \[
 \varphi ::= (\varphi_1)
 \]

 where \(p \in A_P \) is a proposition, and \(\varphi_1 \) and \(\varphi_2 \) are formulae of I-METATEM
A-IMETATEM

> Semantics of Operators

- A **structure** is a pair \(\langle \sigma, i \rangle \in (\mathbb{N} \rightarrow 2^{AP}) \times \mathbb{N} \)

- Given a timestamp \(j \), let \(\sigma(j) \) be the set of propositions in \(AP \) that are true at time \(j \)

Propositions and propositional connectives

\[
\langle \sigma, i \rangle \models p \quad \text{iff} \quad p \in \sigma(i)
\]

\[
\langle \sigma, i \rangle \models \text{true}
\]

\[
\langle \sigma, i \rangle \models \neg \varphi \quad \text{iff} \quad \langle \sigma, i \rangle \not\models \varphi
\]

\[
\langle \sigma, i \rangle \models \varphi \land \psi \quad \text{iff} \quad \langle \sigma, i \rangle \models \varphi \text{ and } \langle \sigma, i \rangle \models \psi
\]

\[
\langle \sigma, i \rangle \models \tau(i)
\]
Temporal connectives

\[\langle \sigma, i \rangle \models X \varphi \iff \langle \sigma, i+1 \rangle \models \varphi \]

\[\langle \sigma, i \rangle \models \varphi U \psi \iff \exists k \in \mathbb{N} \, \langle \sigma, i+k \rangle \models \psi \text{ and } \forall j \, (0 \leq j < k) \, \langle \sigma, i+j \rangle \models \varphi \]

\[\langle \sigma, i \rangle \models \neg X \varphi \iff \text{if } i > 0, \text{ then } \langle \sigma, i-1 \rangle \models \varphi \]

\[\langle \sigma, i \rangle \models \varphi \hat{S} \psi \iff \exists k \, (1 \leq k \leq i) \, \langle \sigma, i-k \rangle \models \psi \text{ and } \forall j \, (1 \leq j < k) \, \langle \sigma, i-j \rangle \models \varphi \]

Temporal connectives in time intervals

\[\langle \sigma, i \rangle \models \varphi U_{m,n} \psi \iff i \leq m \leq n, \exists k \, (m - i \leq k \leq n - i) \, \langle \sigma, i + k \rangle \models \psi \text{ and } \forall j \, (0 \leq j < k - i) \, \langle \sigma, i + j \rangle \models \varphi \]

\[\langle \sigma, i \rangle \models \varphi \hat{S}_{m,n} \psi \iff m \leq n < i, \exists k \, (i - m \leq k \leq i - n) \, \langle \sigma, i - k \rangle \models \psi \text{ and } \forall j \, (1 \leq j < k) \, \langle \sigma, i - j \rangle \models \varphi \]
I-METATEM

> Derived Future-time connectives

future m-state
$X_m \varphi$ states φ will be true in s_{m+1}

bounded eventually
$F_m \varphi$ states φ eventually holds somewhere on the path from the current state to s_m

bounded eventually in time interval
$F_{m,n} \varphi$ states φ eventually holds somewhere on the path from s_m to s_n

always in time interval
$G_{m,n} \varphi$ states φ should become true at most at s_m and then holds at least until s_n

strong always in time interval
$G_{\langle m,n \rangle} \varphi$ states φ should become true just at s_m and then holds until s_n, and not at s_{n+1}

bounded never
$N_{m,n} \varphi$ states φ should not be true in any state between s_m and s_n

sometime in time interval
$E_{m,n} \varphi$ states φ has to occur one or more times between s_m and s_n
I-METATEM

> Derived Past-time connectives

\textit{last m-state}

\(\hat{X}_m \varphi \) states \(\varphi \) was true in past state \(s_{m-1} \)

\textit{bounded some time in the past}

\(\hat{F}_m \varphi \) states \(\varphi \) was true in some past state up to \(s_m \), included

\textit{always in time interval in the past}

\(\hat{G}_{m,n} \varphi \) states \(\varphi \) was true in past state \(s_m \) and then remained true at least until past state \(s_n \)

\textit{strong always in time interval in the past}

\(\hat{\tilde{G}}_{(m,n)} \varphi \) states \(\varphi \) became true just in past state \(s_m \) and then remained true exactly until past state \(s_n \)
Basic I-METATEM rules

- Any I-METATEM formula \(\varphi \) is a rule

 The rule is verified or succeeds whenever \(\varphi \) holds, otherwise the rule is violated

 Rule verification requires groundness

- Example: a goal \(g \) that is not achieved cannot be dropped

 \[N \left(\text{not achieved}(g), \text{dropped}(g) \right) \]

 \[N_{\text{init},\text{end}} \left(\text{not achieved}(g), \text{dropped}(g) \right) \]

 bounded never
Contextual I-METATEM rules

- A contextual I-METATEM rule takes the form $\chi \Rightarrow \varphi$
 - φ is a I-METATEM formula
 - χ is the evaluation context of the rule, and consists of a conjunction of logic programming literals
 - every variable occurring in φ must occur in the context χ

- Example

 \[
 [\text{goal}(\text{Goal}), \text{priority}(\text{Goal}, \text{Pr}), \text{timeout}(\text{Pr}, T_{out})] \Rightarrow F(T_{out}) \text{ achieved}(\text{Goal})
 \]

 a goal with timeout T_{out} should be accomplished before the timeout
Contextual I-METATEM rules with improvement/repair

- An I-METATEM rule with improvement takes the form $\chi \Rightarrow \varphi: A$
 - $\chi \Rightarrow \varphi$ is a contextual rule
 - the atom A is the improvement action of the rule
 - when the monitoring condition φ holds, the improvement action A is attempted
 A is executed as an ordinary logic programming goal, and it assumes a declarative semantics
Contextual A-IMETATEM rules with improvement

> Example

\[
[\text{goal}(\text{Goal}), \text{deadline}(\text{Goal}, T), \text{now}(T2), T2 \leq T] \Rightarrow \\
E(1, 12)(\text{not achieved}(\text{Goal}) \land \text{dropped}(\text{Goal})) : \text{inc_comt}(T2)
\]

If a goal not achieved is dropped sometime in the interval (1,12), then increase commitment level
Contextual A-IMETATEM rules with improvement

> Example

- I-METATEM used to check the past behavior and knowledge of the agent to influence its future behavior

\[
[\text{now}(T), \text{goal}(\text{Goal}), \text{executed}(\text{Goal}), \text{consequence}(\text{Goal}, C)] \Rightarrow \\
\hat{F}_{0,T} \text{ not desired}(C) : \text{assert}([\text{now}(T), \text{threshold}(T1)] \Rightarrow N(T, T1) \text{ exec}(\text{Goal}))
\]

If a goal G had some undesired consequences, then the goal cannot be further pursued, at least until a certain time has elapsed.
Related Work

> SCIFF Abductive Proof Procedure

- Proposed by Lamma et al. in the '80s

- Abductive logic programming language for the specification and run-time verification of interaction protocols

- Most of I-METATEM connectives can be expressed by SCIFF rules except for the *until* connective

- I-METATEM connectives can be composed in several ways with both temporal and logical connectives

 This is not possible with SCIFF rules
Related Work

> LTLeC

- Proposed by D’Souza

- A variant of timed linear time temporal logic (TLTL)

- Its syntax includes the two new atomic formulae:

 \[\triangleleft_a \in I \]

 asserts that the time since the event \(a \) has occurred last time, lies within interval \(I \)

 \[\triangleright_a \in I \]

 asserts that the time until \(a \) occurs again lies within \(I \)
Related Work

> LTLeC

Example

\[G(\text{request} \rightarrow \triangledown_{\text{acknowledge}} \in [0, 5]) \]

if a request event arrives, then it must be handled with an acknowledge event within 5 time units

It can be expressed in I-METATEM as:

\[[\text{now}(T)] \Rightarrow G(\text{request} \Rightarrow F_{0,T+5} \text{acknowledge}) \]

Thus, I-METATEM logic is at least as expressive as the LTLeC logic
Our conjecture is that the two logics have the same expressive power. For example, the I-METATEM connective $U_{m,n}$ can be represented in LTLeC as:

\[
\begin{align*}
\langle \sigma, i \rangle \models \varphi U_{m,n} \psi & \quad (i \leq m \leq n) \\
\equiv & \\
\langle \sigma, i \rangle \models \bigvee_{x=m}^{n} (\triangleright \psi \in [x, x] \land \Gamma)
\end{align*}
\]

where:

\[
\Gamma = \begin{cases}
true & \text{if } x - 1 < i \\
\land_{y=i}^{x-1} (\triangleright \varphi \in [y, y]) & \text{otherwise}
\end{cases}
\]
Contribution

- Temporal logic with connectives defined over intervals to verify the run-time behavior of agents evolution

- Improvement actions that can modify the agent’s knowledge base underlying agent model based on meta-levels