Towards Practical Tabled Abduction Usable in Decision Making

Ari Saptawijaya, Luís Moniz Pereira

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

KES IDT 2013
Sesimbra, 28 June 2013
Abduction (1)

- From observed evidence to its best explanation
- Example
 - Beliefs:
 - The shoes are wet if the grass is wet.
 - The grass is wet if the sprinkler was running.
 - The grass is wet if it rained.
 - Observation
 - The shoes are wet.
 - Abducibles:
 - “The sprinkler was running”,
 - “It rained”.
 - Minimal explanations:
 - “The grass is wet”, or “The grass is wet”, or
 - “The sprinkler was running”, or
 - “It rained”.
Abduction (2)

- Consistent explanations, not necessarily minimal.
- Example
 - Previous beliefs:
 - The shoes are wet if the grass is wet.
 - The grass is wet if the sprinkler was running.
 - The grass is wet if it rained.
 - Plus, new beliefs:
 - The clothes outside are wet if it rained.
 - The clothes are dry.
 - **Integrity Constraint**: Clothes are not both dry and wet.
 - Same abducibles: “The sprinkler was running”, “It rained”
 - Satisfying IC + Observation “The shoes are wet”
 - Single Explanation: The sprinkler was running.
Abductive Logic Programming

- Abduction in Logic Programs
- Example (cont’d)
 - Rules:
 - shoes_wet ← grass_wet.
 - grass_wet ← sprinkler_running.
 - grass_wet ← rained.
 - clothes_wet ← rained.
 - clothes_dry.
 - IC: false ← clothes_wet, clothes_dry.
 - Abducibles: sprinkler_running, rained.
 - Query: ?- shoes_wet, not false.
 - Abductive solutions: sprinkler_running
- Applications: diagnosis, decision making, reasoning of rational agents, …
Tabled Abduction with TABDUAL
Tabled Abduction: Motivation & Main Idea

\[P_1 : \quad q \leftarrow a. \quad r \leftarrow b, q. \quad p \leftarrow r, q. \]

- Abducibles: \{a, b\}
- Query: \texttt{?- q. ?- r. ?- p.}
 - Explaining \(q \): [a].
 - Explaining \(r \): recompute \(q \)?
 - Explaining \(p \): recompute \(r \) and \(q \)?
- Adopt \underline{tabling} in LP, for abductive solution reuse
 - Solutions reuse in distinct context!
- Example
 - \texttt{?-q}: table [a] as solution to \(q \).
 - \texttt{?-r}: reuse solution \(q \) with context [b], but
 - \texttt{?-p}: reuse solution \(q \) with \(r \)'s solution ([a, b]) as its context.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>[a]</td>
</tr>
<tr>
<td>(r)</td>
<td>[a, b]</td>
</tr>
<tr>
<td>(p)</td>
<td>[a, b]</td>
</tr>
</tbody>
</table>
Program Transformation: Tabling Solutions

- Table abductive solution entry
 - XSB-Prolog tabling
 - $P_1 : q ← a. \ r ← b, q. \ p ← r, q.$
 - Table $q^{ab}/1$, $r^{ab}/1$, and $p^{ab}/1$

\[
\begin{align*}
q^{ab}([a]). \\
r^{ab}(E) &\leftarrow q([b], E). \\
p^{ab}(E) &\leftarrow r([], T), q(T, E).
\end{align*}
\]

- Re-uptake context-independent solution E from “ab” tables into different input contexts I

\[
\begin{align*}
q(I, O) &\leftarrow q^{ab}(E), prod(O, I, E). \\
r(I, O) &\leftarrow r^{ab}(E), prod(O, I, E). \\
p(I, O) &\leftarrow p^{ab}(E), prod(O, I, E).
\end{align*}
\]

- $prod/3$: produces consistent abduction result in O
Program Transformation: Dealing with “not”

- $P_2 : \quad p \leftarrow a, \text{not } q. \quad q \leftarrow a, b. \quad q \leftarrow c.$

- Abductive solutions of $\text{not } q$
 - Needs to compute all abductive solutions for q, before negating them,

- Dual rules for negation, via dual transformation
 - Produce negation rules from the positive ones.
 - Find solutions incrementally.
 - Replace default literal $\text{not } q$ by not_q:
 \[
 p^{ab}(E) \leftarrow \text{not}_q([a], E).
 \]
 - Provide dual rules, e.g., for not_q
 \[
 \text{not}_q(I, O) \leftarrow \text{not}_q_1(I, T), \text{not}_q_2(T, O).
 \]
 \[
 \text{not}_q_1(I, O) \leftarrow \text{not}_a(I, O).
 \]
 \[
 \text{not}_q_1(I, O) \leftarrow \text{not}_b(I, O).
 \]
 \[
 \text{not}_q_2(I, O) \leftarrow \text{not}_c(I, O).
 \]
TABDUAL Extensions and Applications in Decision Making
Picking up Abduction-based Actions

- Decision making under hypothetical reasoning
- Given an observation:
 - Several scenarios exist, each characterized by abducibles
 - Decisions are based on explanatory abducibles
- Example:

```
smoke ← fire. smoke ← tear_gas.
beginProlog.
decide(call_firefighters, Abds) ← member(fire, Abds).
decide(police_protection, Abds) ← member(tear_gas, Abds).
endProlog.
```

- Top-goal queries: do(Action, Abducibles, Observation)
 - `?- do(Action, Abducibles, smoke).`
 - `Action = call_firefighters, Abducibles = [fire];`
 - `Action = police_protection, Abducibles = [tear_gas]`
Declarative Debugging: Incorrect Solutions

A buggy program P:

\[
\begin{align*}
a(1). & \quad a(X) \leftarrow b(X), c(Y, Y). \\
b(2). & \quad b(3). \quad c(1, X). \quad c(2, 2). \\
\end{align*}
\]

- Transformation (inc/2 abducible):

\[
\begin{align*}
a(1) & \leftarrow \text{not } inc(1, [1]). \\
a(X) & \leftarrow b(X), c(Y, Y), \text{not } inc(2, [X]). \\
b(2) & \leftarrow \text{not } inc(3, [2]). \\
b(3) & \leftarrow \text{not } inc(4, [3]). \\
c(1, X) & \leftarrow \text{not } inc(5, [1, X]). \\
c(2, 2) & \leftarrow \text{not } inc(6, [2, 2]). \\
\end{align*}
\]

- IC: $\text{false } \leftarrow a(3)$.

- Solutions:

\[
\begin{align*}
[\text{inc}(2, [3])], [\text{inc}(4, [3])], [\text{inc}(5, [1, 1]), \text{inc}(6, [2, 2])].
\end{align*}
\]
Declarative Debugging: Missing Solutions

The same buggy program P:

\begin{align*}
a(1). & \quad a(X) \leftarrow b(X), c(Y, Y). \\
b(2). & \quad b(3). \quad c(1, X). \quad c(2, 2).
\end{align*}

- Transformation (miss/1 abducible):
 Program P plus

\begin{align*}
a(X) & \leftarrow \text{miss}(a(X)). \\
b(X) & \leftarrow \text{miss}(b(X)). \\
c(X, Y) & \leftarrow \text{miss}(c(X, Y)).
\end{align*}

- IC: false \leftarrow not $a(5)$.

- Solutions:
 \[[\text{miss}(a(5))], [\text{miss}(b(5))], [\text{miss}(b(5)), \text{miss}(c(X, X))].\]
A Medical Dental Case

\[
\begin{align*}
\text{percussion_pain} & \leftarrow \text{periapical_lesion}. \\
\text{percussion_pain} & \leftarrow \text{fracture}. \\
\text{radiolucency} & \leftarrow \text{periapical_lesion}. \\
\text{fracture} & \leftarrow \text{horizontal_fracture}. \\
\text{elliptic_fracture_trace} & \leftarrow \text{horizontal_fracture}. \\
\text{tooth_mobility} & \leftarrow \text{horizontal_fracture}. \\
\text{fracture} & \leftarrow \text{vertical_fracture}. \\
\text{decompression_pain} & \leftarrow \text{vertical_fracture}. \\
\text{false} & \leftarrow \text{not percussion_pain}. \\
\text{false} & \leftarrow \text{tooth_mobility}. \\
\end{align*}
\]

\[?
\begin{align*}
\text{fracture}([\], T), \text{not_false}(T, O). \\
\end{align*}
\]

\[
\begin{align*}
\Rightarrow & \quad O = [\text{horizontal_fracture}] \times \\
\Rightarrow & \quad O = [\text{vertical_fracture}] \checkmark \\
\Rightarrow & \quad O = [\text{periapical_lesion, vertical_fracture}] \checkmark \\
\end{align*}
\]
Conclusions and Future Work

- Addressed the issue of tabling abductive solutions: TABDUAL
- Improved and extended TABDUAL towards more practical use
 - System predicate for abducible-based actions
 - System predicate for accessing ongoing abductive solutions
 - Other improvements: simpler facts transformation, dual by-need, ...
- Showed declarative debugging as abduction
- Applied TABDUAL to medical diagnosis
- Future work and application:
 - Perfecting implementation
 - Integrating TABDUAL with program updates and other logic programming features
 - Application to abductive moral decision making
Thank you!