Teaching Critical Thinking to Computer Science Engineering students

Ludwig Krippahl and Luís Moniz Pereira

Primeiro Congresso Pensamento Crítico Contemporâneo, 14-15 Dezembro de 2013
The Critical Thinking course at FCT/UNL
The Critical Thinking course

- Offered for 6 years, 2006/07 through 2011/12
 - One semester, 12 lectures and tutorial sessions
- Average 200 students enrolled in each semester
 - (mandatory for all Computer Science students, 2nd year of curriculum)
- Introduced as a Bologna Soft Skills type course
The Critical Thinking course

- The main goal was to improve the students' ability to:
 - Interpret and express reasoning
 - Evaluate sources and claims
 - Assess scientific experiments
 - Decide, attentive to ethical concerns

- Focus on thought process and argumentation
 - In contrast to focusing on information content, as in most other courses
Critical Thinking
Critical Thinking

- John Dewey
 “Active, persistent and careful consideration of a belief or supposed form of knowledge in light of the grounds that support it, and the further conclusions to which it tends.”

- Robert Ennis
 “…reasonable reflective thinking focused on deciding what to believe or do…”

- Michael Scriven & Richard Paul
 “Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information […] It entails the examination of those structures or elements of thought implicit in all reasoning…”
Critical Thinking

- Active, conscious, reflective
 - Taking charge of one's own thinking processes
1. Argumentation
Argumentation

- An argument is the visible expression of a thought process
- The first part of the course focused on arguments
 - Logical structure
 - Evaluation of premisses, inferences and implicit assumptions
 - Argumentative dialogues
 - With others and with oneself (self criticism)
- Help students become more aware of how they think and express themselves
Argumentation

Fallacies

- Arguments often follow generic schemes that provide a valid justification for the conclusion
 - e.g. appeal to the authority of a cardiologist for diagnosing heart condition
- Fallacies were presented as mimicking valid schemes in inappropriate contexts
 - e.g. appeal to the authority of a football player for selling shampoo
2. Credibility
Credibility

- Questioning and assessing sources and premises is an important part of evaluating reasoning
 - However, it is independent of the logical structure of the argument itself
- Examples:
 - Does the source have access to the information it claims to have?
 - Is the claim consistent with other data?
 - Are there conflicts of interest?
3. Scientific Reasoning
Scientific reasoning

- Distinguish the elements of the problem
 - Reality, model, data, predictions

- Understand the hypothesis:
 - That the model corresponds to those aspects of reality under consideration

- Reject the hypothesis if the data disagrees with the predictions

- Assess the likelihood of agreement if the hypothesis was false
 - Beware of confirmation bias
Scientific reasoning

- Statistical and causal models
 - Distinguish correlation and causality
 - Evaluate experiments
 - Retrospective
 - Prospective
 - Randomized
4. Decision
Decision

- Descriptive theories of decision
 - Biases, framing problems

- Normative theories of decision
 - Maximize utility
 - Ethical considerations

- Focus on delaying decision towards the end of the thought process
 - To prevent rationalization of unreasoned decisions
Our approach
Our approach

- Discussing issues that lack a clear, “back of the book”, answer
 - Alien abductions, news, politics...
- Focus on the process, not on the results
- Have the students exercise their critical and argumentative powers with each other
 - Presentation of prepared texts, followed by discussion, in tutorial classes
Conclusions
Conclusions

- Discontinued due to curriculum reforms at FCT
 - Uniform offer of soft-skills courses
- Impact is difficult to assess
 - ~30% students filled questionnaires
 - ~65% gave a positive classification
 - Slightly below average for students who passed the course, when compared to all FCT courses
 - Significantly below average for students who failed the course
Conclusions

- In general, stronger student response
 - Both positive and negative
 - Correlated with approval or failure
 - Possibly because of connotation with thinking and intelligence

- Major complaint: not relevant for Computer Science curriculum
 - General problem with soft-skills courses

- Long term effects?
 - Hopefully, some...
More information

- Course page is still online:
 - ssdi.di.fct.unl.pt/pc

- Textbooks
 - Manual de Pensamento Crítico
 - (work in progress...)