Proactive Intention Recognition for Home Ambient Intelligence

Han The Anh and Luís Moniz Pereira

CENTRIA–UNL

Artificial Intelligence Techniques for Ambience Intelligence
Kuala Lumpur, July 18, 2010
Introduction

- Taking into account users’ preferences and needs is important for Ambient Intelligence systems to be more acceptable.
- Intention recognition enables to solve several issues, e.g. proactive support, security, emergency, in a timely manner.
- We explore a coherent combination of jointly logic programming based implemented systems:
 - **Evolution Prospection**: implements several kinds of well-studied preferences and useful constructs for decision making.
 - **Individual Intention Recognition**: performs in two stages, using Bayesian Networks and a Planner.
 - **Collective Intention Recognition**: for domains where multiple users are of concern.
Taking into account users’ preferences and needs is important for Ambient Intelligence systems to be more acceptable.

Intention recognition enables to solve several issues, e.g. proactive support, security, emergency, in a timely manner.

We explore a coherent combination of jointly logic programming based implemented systems:

- **Evolution Prospection**: implements several kinds of well-studied preferences and useful constructs for decision making.
- **Individual Intention Recognition**: performs in two stages, using Bayesian Networks and a Planner.
- **Collective Intention Recognition**: for domains where multiple users are of concern.
Evolution Prospection Agents - EPA

- Agents can prospectively look ahead into their hypothetical futures, in order to determine the best one to follow.

- EPA was implemented in ABDUAL, a XSB-Prolog abduction system, allows computing abductive solutions to given queries.

- Some constructs of EPA, to the extent of usage in this talk:
 - Active goals
 - Abducibles
 - Local preferences
Active Goal

At each cycle, the agent has a set of active goals to be satisfied

\[\text{on_observe}(AG) \leftarrow \text{Events} \]

“On observing Events trigger goal AG”

Combine with Intention Recognition: Motivation

- **Events**: dangerous intention detected \(AG \): prevent it.
- **Events**: user intends to find sth. \(AG \): help to locate it.
- **Events**: user intends to choose sth. \(AG \): suggest him taking into account health conditions, preferences, agenda, etc.
Abducibles

- Each program has a set of abducibles, providing hypotheses for hypothetical solutions to a given query.
- An abducible can be hypothesized if it is expected and there is no counter-expectation.

Example

Three abducibles: \([\text{call_police, warn_persons, activate_alarm}]\)

1. \(\text{on_observe}(\text{solve_intrusion}) \leftarrow \text{intrusion_intention_detected}\).
2. \(\text{solve_intrusion} \leftarrow \text{call_police}\).
 \(\text{solve_intrusion} \leftarrow \text{warn_persons}\).
 \(\text{solve_intrusion} \leftarrow \text{activate_alarm}\).
Local Preferences

- **A priori preferences:** prefs. over abducibles

\[a \prec b \leftarrow \text{Precs} \quad \text{“Prefer abducible } a \text{ to abducible } b” \]

- **A posteriori preferences:** prefs. over abductive solutions

\[A_i \ll A_j \leftarrow \text{holds _given}(L_i, A_i), \text{ holds _given}(L_j, A_j) \]

“\(A_i \) is preferred to \(A_j \) if \(L_i \) and \(L_j \) are true consequences of \(A_i \) and \(A_j \), respectively”

Example

3. \(\text{activate_alarms} \prec \text{call_police} \leftarrow \text{no_weapon_detected} \)

4. \(A_i \ll A_j \leftarrow \text{holds _given}(\text{not_annoy}, A_i), \text{ holds _given}(\text{annoy}, A_j) \)
Local Preferences

- **A priori preferences**: prefs. over abducibles

 \(a \triangleleft b \leftarrow \text{Precs} \quad \text{“Prefer abducible } a \text{ to abducible } b \” \)

- **A posteriori preferences**: prefs. over abductive solutions

 \(A_i \ll A_j \leftarrow \text{holds_given}(L_i, A_i), \text{ holds_given}(L_j, A_j) \)

 “\(A_i \) is preferred to \(A_j \) if \(L_i \) and \(L_j \) are true consequences of \(A_i \) and \(A_j \), respectively”

Example

3. \(\text{activate_alarms} \triangleleft \text{call_police} \leftarrow \text{no_weapon_detected} \)

4. \(A_i \ll A_j \leftarrow \text{holds_given}(\text{not_annoy}, A_i), \text{ holds_given}(\text{annoy}, A_j) \)
Individual Intention Recognition

- **Intention recognition (IR):** process by which an agent becomes aware of the intention of others.

- **Mainstream of IR:** reducing to plan generation – generating conceivable plans achieving intentions and choosing ones matching observations.
 - Difficulty: finding the initial set of intentions.

- **Two-stage intention recognition system:**
 1. **Bayesian Networks:** computes likelihood of intentions conditional on current observations, then filter out the much less likely ones.
 2. **Planner or Plan Library:** generates conceivable plans for remaining intentions.
Individual Intention Recognition

- **Intention recognition (IR):** process by which an agent becomes aware of the intention of others.

- **Mainstream of IR:** reducing to plan generation – generating conceivable plans achieving intentions and choosing ones matching observations.
 - Difficulty: finding the initial set of intentions.

- **Two-stage intention recognition system:**
 1. **Bayesian Networks:** computes likelihood of intentions conditional on current observations, then filter out the much less likely ones.
 2. **Planner or Plan Library:** generates conceivable plans for remaining intentions.
Advantages of The Approach

• From likelihood of intentions, the recognizing agent can see which intentions are more likely and worth addressing first – especially important in case of quick decision making.

• Comparing to approaches using BNs solely, combining with a planer guides recognition process: which actions should be checked for whether they were or will be (maybe hiddenly) executed.
Example (Elder Intentions)

- An elder stays alone in his apartment.
- One day, the Burglary Alarm is ringing.
- IR system observes that he is looking for something.
- To assist him, it needs to figure out what he intends to find.
- Possible things are:
 - Alarm button \((\text{AlarmB})\);
 - Contact Device \((\text{ContDev})\);
 - Defensible Weapons \((\text{Weapon})\);
 - Light switch \((\text{Switch})\).
Bayesian Network for Intention Recognition
Collective Intention

- Collective intention of a group of agents is not a mere summation of individual intentions (Philosophy, AI)
 - It involves a sense of acting and willing something together.

- “Glue” amongst agents, e.g. mutual beliefs:
 - Agents have mutual expectations among each other.
 - Expectation actions should be observed, and reactions to any lack thereof.
Collective Intention Recognition Method

Searle’s Account of Collective Intention

With presuppositions of mutual awarenesses or beliefs:

a virtual plural agent has the collective intention.

Method

Collective IR is reduced to individual IR plus checking if there are actions reflecting mutual expectations amongst agents:

1. First step: From the observations infer the intentions as if these observations came from the plural agent; then

2. Second step: Figure out which of the recognized intentions is a genuine collective intention by checking if there are actions reflecting the mutual expectations between the agents.
Some Desired Features for Home AmI

- Proactively provide support for users
- Handling security situations (for Home AmI)
 - Security in terms of Burglary Alarm systems
 - Security in terms of health and well-being of residents
- Handling emergency
Proactively Providing Support

- **Aml key feature**: the systems should take initiative to help.
- In order to **proactively provide contextually appropriate help**, e.g. for elders, the assisting system needs to be able to
 1. Observe the elders’ actions
 2. **Recognize his/her intentions**, or their collective intention
 3. **Provide suggestions or help** for achieving the recognized intentions (EPA).

Examples

- `on_observe(suggest_a_drink) ← find_drink_intention_detected`.
- `on_observe(help_locate) ← find_TV_remote`
Security: Burglary Alarm System

• Burglary Alarm technology has been based on sensing and recognizing very last actions of an intrusion plan
 • e.g. “breaking the door”.

• It may be too late to provide appropriate protection.

• Need to anticipate possibility of intrusion from very first observed actions of potential intruders.

• Two-stage Intention Recognition:
 • From first observed actions BN computes likelihood of conceivable intentions.
 • If worrisome enough, the carer should be informed.
Security: Burglary Alarm System

- Burglary Alarm technology has been based on sensing and recognizing very last actions of an intrusion plan
 - e.g. “breaking the door”.
- It may be too late to provide appropriate protection.
- Need to anticipate possibility of intrusion from very first observed actions of potential intruders.

Two-stage Intention Recognition:
- From first observed actions BN computes likelihood of conceivable intentions.
- If worrisome enough, the carer should be informed.
Security: Health and Well-being

- Aml systems need being able to prevent hazardous situations, which usually come from dangerous ideas or intentions:
 - e.g. take a bath when drunk; drink alcohol while not permitted; or even commit suicide.

- To this end, guessing their intentions from very first relevant behaviors is indispensable for taking timely actions.
Emergency Handling

• **Emergency situations**: recognizing intrusion intention; users’ dangerous intentions; detecting fire; etc.

• **Emergency handling with EPA**

 • An active goal for each emergency situation.

 • For each goal: a list of possible actions, represented by abducibles, are available to form solutions.

 • Take into account users’ preferences:

 • *a priori* prefs. for preferring amongst available actions;

 • *a posteriori* prefs. for comparing solutions taking into account their consequences and utility;

 • Expectation and counter expectations rules: encoding pros and cons of users towards available actions.
Summary

- We have described two systems: Evolution Prospection and Individual Intention Recognition.
- And shown how their combination are useful to tackle some issues of AmI in home environment
 - Providing proactive support.
 - Security and Emergency issues.
- We have presented a method for collective intention recognition.
Future Work

- Provide explanations for the suggestions the system provides.
- Develop an anytime, incremental intention recognition system for different issues of AmI.
Thank you!

QUESTIONS?