Abductive Logic Programming with Tabled Abduction

Luís Moniz Pereira, Ari Saptawijaya

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

ICSEA 2012 – Lisbon
20 November 2012
Abduction (1)

- From observed evidence to its best explanation
- Example
 - Beliefs:
 - The shoes are wet if the grass is wet.
 - The grass is wet if the sprinkler was running.
 - The grass is wet if it rained.
 - Observation
 - The shoes are wet.

- Minimal explanations:
 - “The grass is wet”, or
 - “The sprinkler was running”, or
 - “It rained”.
Abduction (1)

- From observed evidence to its best explanation
- Example
 - Beliefs:
 - The shoes are wet if the grass is wet.
 - The grass is wet if the sprinkler was running.
 - The grass is wet if it rained.
 - Observation
 - The shoes are wet.
 - Abducibles:
 - “The sprinkler was running”,
 - “It rained”.
 - Minimal explanations:
 - “The grass is wet”, or
 - “The sprinkler was running”, or
 - “It rained”.
Abduction (2)

- Consistent explanations, not necessarily minimal.
- Example
 - Previous beliefs:
 - The shoes are wet if the grass is wet.
 - The grass is wet if the sprinkler was running.
 - The grass is wet if it rained.
 - Plus, new beliefs:
 - The clothes outside are wet if it rained.
 - The clothes are dry.
 - Integrity Constraint (IC):
 No clothes are both dry and wet.
 - Same abducibles: “The sprinkler was running”, “It rained”
 - Satisfying IC + Observation “The shoes are wet”
 - Single Explanation: The sprinkler was running.
Abductive Logic Programming

- Abduction in Logic Programs
- Example (cont’d)
 - Rules:
 - shoes_wet ← grass_wet.
 - grass_wet ← sprinkler_running.
 - grass_wet ← rained.
 - clothes_wet ← rained.
 - clothes_dry.
 - IC: false ← clothes_wet, clothes_dry.
 - Abducibles: sprinkler_running, rained.
 - Query: ?- shoes_wet, not false.
 - Abductive solutions: sprinkler_running
- Applications: diagnosis, decision making, …
Tabled Abduction: Motivation

\[P_1 : \quad q \leftarrow a. \quad r \leftarrow b, q. \quad p \leftarrow r, q. \]

- Abducibles: \(\{a, b\}\)
- Query: \(?-q. \quad ?-r. \quad ?-p.\)
 - Explaining \(q\): [a].
 - Explaining \(r\): recompute \(q\)?
 - Explaining \(p\): recompute \(r\) and \(q\)?
- Adopt *tabling* in LP, for abductive solution reuse
 - Table [a] as solution to \(?-q\).
- Solutions reuse in distinct context!

<table>
<thead>
<tr>
<th>Goal</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>[a]</td>
</tr>
</tbody>
</table>
Tabled Abduction: Motivation

\[P_1 : \quad q \leftarrow a. \quad r \leftarrow b, q. \quad p \leftarrow r, q. \]

- Abducibles: \{a, b\}
- Query: \(?-q. \quad ?-r. \quad ?-p. \)
 - Explaining q: [a].
 - Explaining r: recompute q?
 - Explaining p: recompute r and q?
- Adopt tabling in LP, for abductive solution reuse
 - Table [a] as solution to ?-q.
- Solutions reuse in distinct context!
 - ?-r: reuse solution q with context [b], but

<table>
<thead>
<tr>
<th>Goal</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>[a]</td>
</tr>
<tr>
<td>r</td>
<td>[a, b]</td>
</tr>
</tbody>
</table>
Tabled Abduction: Motivation

\[P_1 : \quad q \leftarrow a. \quad r \leftarrow b, q. \quad p \leftarrow r, q. \]

- Abducibles: \{a, b\}
- Query: \(?-q. \quad ?-r. \quad ?-p.\)
 - Explaining \(q\): \([a]\).
 - Explaining \(r\): recompute \(q\)?
 - Explaining \(p\): recompute \(r\) and \(q\)?
- Adopt tabling in LP, for abductive solution reuse
 - Table \([a]\) as solution to \(?-q\).
- Solutions reuse in distinct context!
 - \(?-r\): reuse solution \(q\) with context \([b]\), but
 - \(?-p\): reuse solution \(q\) with \(r\)'s solution \(([a, b])\) as its context.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>([a])</td>
</tr>
<tr>
<td>(r)</td>
<td>([a, b])</td>
</tr>
<tr>
<td>(p)</td>
<td>([a, b])</td>
</tr>
</tbody>
</table>
Program Transformation: Tabling Solutions

- Table abductive solution entry
 - XSB-Prolog tabling
 - $\text{P}_1 : \ q \leftarrow a. \quad r \leftarrow b, q. \quad p \leftarrow r, q.$
 - Table $q^{ab}/1$, $r^{ab}/1$, and $p^{ab}/1$

 \[
 q^{ab}([a]).
 \]

 \[
 r^{ab}(E) \leftarrow q([b], E).
 \]

 \[
 p^{ab}(E) \leftarrow r([\], T), q(T, E).
 \]

- Re-uptake context-independent solutions from “ab” tables into different contexts

 \[
 q(I, O) \leftarrow q^{ab}(E), \text{prod}(O, I, E).
 \]

 \[
 r(I, O) \leftarrow r^{ab}(E), \text{prod}(O, I, E).
 \]

 \[
 p(I, O) \leftarrow p^{ab}(E), \text{prod}(O, I, E).
 \]

- $\text{prod}/3$: produces consistent output abduction result
Program Transformation: Dealing with “not”

- $P_2 : \ p \leftarrow a, \ not \ q. \quad q \leftarrow a, b. \quad q \leftarrow c.$
 - Abductive solutions of $not \ q$: compute first all abductive solutions for q, before negate them?
 - Finding solutions incrementally.

- Dual rules via dual transformation
 - Replace default literal $not \ q$ to not_q

 $p^{ab}(E) \leftarrow not_q([a], E).$
 - Provide dual rules: not_q

 $not_q(I, O) \leftarrow not_q_1(I, T), not_q_2(T, O).$
 $not_q_1(I, O) \leftarrow not_a(I, O).$
 $not_q_1(I, O) \leftarrow not_b(I, O).$
 $not_q_2(I, O) \leftarrow not_c(I, O).$
Program Transformation: Loops

- Mostly employ XSB-Prolog’s tabling to deal with loops.
- \(P_3 : \quad p \leftarrow q. \quad q \leftarrow p. \)
 - Direct positive loop: \(?- p.\) is correctly answered: ‘no’.
 - Detected via loop between tabled predicates \(p^{ab} \) and \(q^{ab} \).
 - What about query: \(?- not \ p.\)
 - It loops, instead of ‘yes’.

 \[
 \text{not}_p(I, O) \leftarrow \text{not}_p(I, O). \quad \text{not}_p(I, O) \leftarrow \text{not}_q(I, O).
 \]

 \[
 \text{not}_q(I, O) \leftarrow \text{not}_q(I, O). \quad \text{not}_q(I, O) \leftarrow \text{not}_p(I, O).
 \]
 - Detect such loops by maintaining an ancestor list (with just negative “not” literals)
 \[
 \text{not}_p \sim \text{not}_p
 \]
 ancestor: \([\]\)
 - When a positive literal is called, reset ancestor list to \([\]\).
 - Additionally, negative loops over negation are also handled by the transformation, e.g., programs like
 \[
 P_4 : \quad p \leftarrow q. \quad q \leftarrow \text{not} \ p.
 \]
Program Transformation: Loops

- Mostly employ XSB-Prolog’s tabling to deal with loops.
- $P_3 : \ p \leftarrow q. \ q \leftarrow p.$
 - Direct positive loop: $?-p.$ is correctly answered: ‘no’.
 - Detected via loop between tabled predicates p^{ab} and q^{ab}.
- What about query: $?-not\ p.$
 - It loops, instead of ‘yes’.

\[
\begin{align*}
not_p(I, O) & \leftarrow not_p_1(I, O). \notag \\
not_p_1(I, O) & \leftarrow not_q(I, O). \\
not_q(I, O) & \leftarrow not_q_1(I, O). \notag \\
not_q_1(I, O) & \leftarrow not_p(I, O). \\
\end{align*}
\]

- Detect such loops by maintaining an ancestor list (with just negative “not” literals)
 - ancestor: $[\]$ \leadsto $[not_p]$ \leadsto
- When a positive literal is called, reset ancestor list to $[\]$.

- Additionally, negative loops over negation are also handled by the transformation, e.g., programs like

\[
P_4 : \ p \leftarrow q. \ q \leftarrow not\ p.
\]
Program Transformation: Loops

- Mostly employ XSB-Prolog’s tabling to deal with loops.
 - $P_3 : \ p \leftarrow q. \ q \leftarrow p.$
 - Direct positive loop: $?-p.$ is correctly answered: ‘no’.
 - Detected via loop between tabled predicates p^{ab} and q^{ab}.
 - What about query: $?-not \ p.$
 - It loops, instead of ‘yes’.

- Detect such loops by maintaining an ancestor list (with just negative “not_” literals)
 - ancestor: [] [not_p] [not_p, not_q] loop!

- Additionally, negative loops over negation are also handled by the transformation, e.g., programs like

 $P_4 : \ p \leftarrow q. \ q \leftarrow not \ p.$
Query Transformation

- Add (input and output) abductive contexts
- Conjoin with not false, to meet ICs
 - ICs in program are translated as any other rules.
 - In case no ICs, add not_false(I, I) in the program.
- In case of negative query, made it “positive”.
- Example: ?-not p.
- This query is called as a top goal:

 ?-not_p([], T), not_false(T, O).
Comparison with ABDUAL and NegABDUAL

<table>
<thead>
<tr>
<th>Feature</th>
<th>ABDUAL</th>
<th>NegABDUAL</th>
<th>TABDUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabled solutions reuse</td>
<td>✕</td>
<td>✕</td>
<td>✓</td>
</tr>
<tr>
<td>Dual transformation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Meta-interpreter</td>
<td>✓</td>
<td>✓</td>
<td>✕</td>
</tr>
<tr>
<td>Programs with variables</td>
<td>✕</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Constructive negation</td>
<td>✕</td>
<td>✓</td>
<td>✕</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

- Addressed the issue of tabling abductive solutions
- Achieved via program transformation
 - Table abductive solutions
 - Deal with negative literals
 - Deal with loops
 - Deal with programs and queries containing variables
- Future work:
 - Perfecting implementation
 - Evaluation TABDUAL
 - Application of TABDUAL
 - Migrating core features into an engine-level
 - Tabling abduction entries
 - Hiding data structures, e.g. the ancestor list
Thank you!