Reference Model and Perspective schemata inference for Earprise Data Integration

Valéria Magalhaes Pequehdoao Carlos Moura Pirés

ICENTRIA, Departamento de Informatica,
Faculdade de Ciéncias e Tecnologia, FCT, UniversidadeaeW.isboa
2829-516, Caparica, Portugal

vhp@ct.unl.pt, jnp@li.fct.unl.pt

keywords: ETL process, conceptual data model, data integrationespandence assertions,
object-relational database, rewriting-rules

Abstract

One of leading issues in database research is to developlienechanisms for providing integrated access to dis-
tributed, heterogeneous databases and other informationes. A wide range of techniques has been developed
to address this problem, the main drawback being the diffiéaldeveloping a single (global) database schema
that captures all the nuances of diverse data types, anéssg® a unified view of the enterprise. We deal with
this problem by taking a declarative approach, which is thasethe creation of a reference model and perspective
schemata. The former provides a common semantic, whileattter lIconnects schemata. This paper focus on
deduction of new perspective schemata using a proposeeivdfe mechanism.

1. Introduction

One of the leading issues in database research is to develdpldl mechanisms for providing inte-
grated access to multiple, distributed, heterogeneowhdaes and other information sources. A wide
range of techniques has been developed to address thigprolicluding approaches based on cre-
ation of Data Warehouses (DWSs), ancBerated Rtabase Bstems (FDBs). DWs are highly specialised
database systems which contain the unified history of arrpige at a suitable level of detail for de-
cision support. All data are integrated into, usually, ayErepository, with a generalised and global
schema. A FDB enables a unified virtual view of one or more raatous sources of information to
hide data heterogeneity from the applications and useghtlyicoupled FDB, those that occur in DWs,
provides a global schema expressed in a common, "canorde#’ model. Unlike a DW, a FDB leaves
data at the source.

One of the main drawbacks of these approaches is the difficultleveloping a single (global or
common) database schema that captures all the nuancessdfalivata types, and expresses a unified
view of the enterprise. The designer should usually dedl initompatible data models, characterised by
subtle differences in structure and semantic. Besideshaehould define mappings between the global
schema and the schemata of the source information. Thebtepre are hardest to deal with because
of the rapid growing of the data volume and the data model ¢exitp (both in sources and in global
schema), which implies the rise of the difficulty of managamgl understanding these models [1].

Technical Report (draft)June 4, 2009

RM
schema
Prmic
. \. \\.‘ R G
S | s)
! Psi1,s2,...5n/G schema

Figure 1: Proposed architecture.

In order to deal with this problem, it is proposed to take dafative approach, based on the cre-
ation of a reference model and perspective schemata. A&efeModel is an abstract framework that
provides a common semantic that can be used to guide theogeveht of other models and help with
data consistency [1]. A perspective schema describes anttadal, part or whole (target schema), in
terms of other data models (base schemata). In Fig. 1, f@rios,P gy, .-, Psn rar re perspective
schemata that map the reference mo&aj in terms of the source schemata.

In the proposed approach, the relationship between thesohsenata and the target schema is made
explicitly and declaratively through correspondence rdigses. An advantage of the proposed approach
is that by using the reference model the designer does ndttaeeap schemata each other. This effort is
theoretically reduced since schemata (source or globad} omnly align with the reference model, rather
than each participating schema. Besides, the designermbbeseed to have a deep knowledge of all
schemata involved in the DW system or in the federation ayst€hus, the designer can describe the
global system without concerns about where the sourcesrdrevothey are stored. Furthermore, the
mapping between the global schema and its sources is autaflyagenerated by an inference mech-
anism. This paper focuses on the deduction of new perspestitemata using a proposed inference
mechanism.

The remainder of this paper is laid out as follows. Sectiome&@nts an overview of the reference
model-based framework proposed in [2]. Section 3 brieflycdless the language to define the perspec-
tive schemata. Section 4 details the process to infer negppetive schemata. Section 5 concisely
mentions representative works in data integration area.plper ends with Section 6, which points out
the new features of the approach presented here and in gngopianned future work on this topic.

2. The framework

The proposal presented in [2] offers a way to express theimgislata models (source, reference
model, and global/integrated schema) and the relatioriséfpveen them. The approach is based on
Schema languagg. s) andPerspective schema languafieps).

Schema languagé.s) is used to describe the actual data models (source, retenmodel, and
global/integrated schema). The formal framework focusearoobject-relational paradigm, which in-
cludes definitions adopted by the main concepts of objectr@iational models as they are widely ac-

Technical Report (draft)June 4, 2009

Part of the source schema S, Part of the source schema §,
CUSTOMER CUSTOMER SALE ITEM
; 0..% 1.7
ORDER_DETAIL PURCHASE_ORDER | #cidg;, #oust_ids,] 1—‘—[
— oo nameg, cust_nameg, 0..% ;
i © | contactg, phoneg,
PRODUCT
Part of the reference model RM Part of the global schema G
SALE_ITEM SALE CUSTOMER CUSTOMER SALES ITEM
0.* 7 . 0.4 1.
T e #cidgy, #idcardg 5 4‘1
REGION cnamegy nameg 0.*
caddressgy contactg L
1 1.0.4 cphonegy,
PRODUCT e PRODUCT

Figure 2: Motivating example.

cepted in literature — cf. [3, 4].

Perspective schema languafier) is used to describperspective schemata perspective schema
is a special kind of schema that describes a data model (patiae) target schempin terms of other
data modelsi{ase schemajal ps mainly extends g with two components: @respondence gsertions
(CAs) and_Matching_Rinctions (MFs). Correspondence Assertions formally $pebie relationship
between schema components. Matching functions indicaenwivo data entities represent the same
instance of the real world. g includes data transformations, such as names conversibdada types
conversion.

Fig. 1 illustrates the basic components of the proposeditaotire and their relationships. The
schematd®kM, S;,....S,, andG are defined using the language &nd represent, respectively, the refer-
ence model, the source schem8&ta...S,,, and a global schema. The schem@taandS’; are defined
using the language tg. They are special kinds of perspective schemata (cafled schempg since
the target schema is described in the scope of a perspectieeng, instead of just referring to an ex-
isting schemaS’; andS’, represent, respectively, the view schenfata(a viewpoint of schem&),
andS’, (an integrated viewpoint of schemdba andS3). The relationships between the target schema
and the base schemata are shown through the perspectiveaeli® | ryy,---» Ponras:P 1| @Nd
Py1,s2,.. sn|c (denoted by arrows). In the current research, the perspesthema® i/ oo . o) CAN
be automatically deduced by the proposed inference mexhanihe next Section illustrates, through
the examples, the language 4, and the Section 4 presents the proposed inference mechahRix a
more detailed and formal description of land Lpg languages, the reader is referred to [5, 6, 2].

3. Perspective Schema Language

The remainder of the paper, considers a simple sales soas@riprising two data sourc& and
So, areference mod@&M, and a global schem@a. The schemata are shown in Fig. 2. All properties that
are key to a relation (or class) are shown in Fig. 2 usifidpefore their names.

The language kg is used to define perspective schemata. A perspective sctiescabes a data

Technical Report (draftJune 4, 2009

3.1 Matching Functions 4

model, part or wholetarget schemp in terms of other data modelsgse schemajaUsually, a perspec-
tive schema is formed by the following components:

1. Nameis a schema name with the notatid?g 1, beingS the name of one or more base
schemata and the name of the target schema. In Fig. 2, for instaRgg, zy, is @a name
of a perspective schema whose base schemaasn®the target schemafV;

2. 'Require’ declarationexpress the subset of the components of the target scheasads|
relations, keys, and foreign keys) that will be necessath@rperspective schema,;

3. Matching_Function signaturesndicate which matching functions must be implemented
to determine when two objects/tuples are distinct reptasiens of the same object in
the real-world;

4. Correspondence gsertionsestablish the semantic correspondence between schemata’s
components.

The target schema may have much more information than isregljto represent in a perspective
schema, namely when the target schema is the Reference Mbgtade, it is required to clearly indicate
which elements of the target schema are in the scope of tepgaive schema. This is done ip using
‘require’ declarations. For instance, consider the partsgeschem#s, ry between the schemaliv
(the target schema) ar®), (the base schema), both as presented in Fig. 2. For thisguisspschema,
four relations fromRM are neededPRODUCT, CUSTOMER SALE, and SALE_ITEM). The 'require’
declaration to relatiocusTOMER for example, would be as follows:

requireCUSTOMER {cidrm, CNamerm, cphonam})

Note that, for instance, the propertieegion idgy andcaddresgy from RM.CUSTOMERare not
declared as being required.

3.1. Matching Functions

From a conceptual viewpoint, it is essential to provide a waydentify instances of different
schemata that represent the same entity in the real-wohld pfoposal presented in [2] is to use match-
ing functions, which can include various techniques forahiig instances, including some of those
used in data cleaning, such as lookup tables, user-defimetidas, heuristics and past matching. These
functions, as occur in [7], define a 1.1 correspondence lastvilee objects/tuples in families of cor-
responding classes/relations. In particular, the workvshim [2] is based on the following matching
function signature:

match : ((Sq [R1],71) x (S2[R2],72)) — Boolean 1)

beingS; schema names,;Rlass/relation names, angthe data type of the instances of,fori € {1,2}.
When both arguments are instancetitch verifies whether two instances are semantically equivalent
or not. If only one argument is instanced, €53.R;, then it obtains the semantically equival&it R,y
instance of the givef.R; instance, returning true when it is possible, and false wiathing is found

or when there is more than one instance to match.

In some scenarios one-to-many correspondence betweandastare common, e.g. when historical
data is stored in the DW. In this case, a variantnaitch should be used, which has the following form:

match : ((S1[R1],71) x (S2 [Re (predicate)], m2)) — Boolean 2

Technical Report (draft)June 4, 2009

3.2 Correspondence Assertions 5

predicate is a boolean condition that determines the context in whiehinstance matching must be
applied inS,.Rs.

An example of a matching function signature involving sch&arof Fig. 2 is presented in Fig. 3.
The implementation of the matching functions shall be exthy provided, since their implementation
is very close to the application domain. However, in ordentike easer the implementation of a simple
prototype, a new variants afiatch is introduced in Lpg:

match : ((Sy [R1], 71, {P'1 : 71, oo, P : 70 }) X (S2 [Ro] , 72, {p} : 71, ..., Pl - 70 })) — Boolean (3)

being thatp;:7'; € type(R1); andp!:77 € type(Rz), 1 < i < n.! This variant of the matching function
is automatically generated by the system and indicatesthigatmatching is done by simple attribute
comparison, i.e. each propent; of R; will be compared with the property of R, for 1 <i <n.

match:((RM[cusTOMER],71) x (G[CUSTOMER),72))—Boolean

Figure 3: Example of a matching function signature.

3.2. Correspondence Assertions

The semantic correspondence between schemata’s compamédetlared in the proposal presented
in [2] through the @rrespondence gsertions (CAs), which are used to formally assert the spoe-
dence between schema components in a declarative fashianar€ classified in four groupsréperty
Correspondence gsertion (PCA), Etension @rrespondence gsertion (ECA), Bmmation @rrespondence
Assertion (SCA), and ggregation ©rrespondence gsertion (ACA). Examples of CAs are shown in
Fig. 4 and explained in this Section.

Property Correspondence Assertions (PCAS)

Y1 Prwjc [CUSTOMER eidcardg — numberTOtex{RM [CUSTOMER e Cidrwm)

Y2: Prw|c [CUSTOMER e contacls — RM [CUSTOMER e cphonegy

Extension Correspondence Assertions (ECAS)

Y3 Prwjc [CUSTOMER — RM[CUSTOMER

4. S, [CUSTOMER — S; [CUSTOMER X Sg [CUSTOMER|

Summation Correspondence Assertion (SCA)

Y5 Ps,jrm [PRODUCT] (pidgy) — normalisg(S; [PRODUCT SALES] (product_numberg;))

Figure 4: Examples of correspondence assertion.

Property CAs relate properties of a target schema to theepiep of base schemata. They allow
dealing with several kinds of semantic heterogeneity siwchaming conflict(for instance synonyms
and homonyms propertiegjata representation confli¢that occur when similar contents are represented
by different data types), anencoding conflict{that occur when similar contents are represented by
different formats of data or unit of measures). For examgile, PCAsy; and) (see Fig. 4) deal
with, respectivelydata representation confli@ndnaming conflict ¢ links the propertyidcard to

ltype() is a function defined in languageslthat returns the structural type of a relation/class.

Technical Report (draft)June 4, 2009

3.2 Correspondence Assertions 6

the propertycidzy, using the functiomumberTOtext to convert the data type fromumberto text o
assigngontact; to cphonegy, .

The Extension CAs are used to describe which objects/tupless base schema should have a
corresponding semantically equivalent object/tuple ie target schema. For instance, the relation
G.CUSTOMERIs linked to relationRM.cusToOMER through the ECAy3 presented in Fig. 445 de-
termines thaG.cusToMERandRM.CUSTOMERare equivalent, i.e., for each tuple@sToMEROf the
schemaRM there is one semantically equivalent tuplecinsTomMERof the schem#&s, and vice-versa.

There are five different kinds of ECAs: equivalence, sedegtdifference, union, and intersection,
being the ECA of union similar to theatural outer-joinof the usual relational models. For instance,
consider the view schema, Svith the relationcusTOMER which is related to the relationUSTOMER
of the schema Sand to the relation with the same name gftrough the ECA)4 shown in Fig. 4.4/,
determines thatusTOMERIN S, is the union/join ofcUSTOMERIN S; andCUSTOMERIN Sy, i.e., for
each tuple oftusToMERof the schema Sthere is one semantically equivalent tuplecinsSTOMER of
the schema § or for each tuple oEusTOMER of the schema $there is one semantically equivalent
tuple incusToMERoOf the schema § and vice-versa. In an ECA, any relation/class can appeéravi
selection condition, which determines the subset of itgtsiof the class/relation being considered. This
kind of ECA is especially important to the DW because throitghe current instances of the DW can
be selected and related to the instances of their sourcésh(wbually do not have historical data).

The Summation CAs are used to describe the summary of arelas®h whose instances are re-
lated to the instances of another class/relation by breakiam into logical groups that belong together.
They are used to indicate that the relationship betweersesa®lations involve some type of aggre-
gate functions (called SCA of groupby) or a normalisationcess (called SCA of normalisatién)For
example, consider the source schefa(not presented in any figure), which contains a denormalised
relationPRODUCT SALES(product_numberss, productss, quantity ss, pricess, purchase ordersz) and
the schemd@&M presented in Fig. 22RODUCT.SALES holds information about sold items in a purchase
order as well as information logically related to produdtemselves, which could be in another rela-
tion, occurring in schem&M. The SCAv5, displayed in Fig. 4, determines the relationship between
PRODUCT SALES andRM.PRODUCTWhen a normalisation process is involved, i.e., it deteawithat
RM.PRODUCTIs a normalisation 0f53.PRODUCT SALES based on distinct values of propenyod-
uct_numbersgs.

The Aggregation CAs link properties of the target schemaédgroperties of the base schema when
a SCA is used. ACAs associated to SCAs of groupby containsggtion functions supported by most
of the queries languages, like SQL-99 [8], i.seummation, maximum, minimum, averagel count
The ACAs, similar to the PCAs, allow for the description ofel kinds of situations; therefore, the
aggregate expressions can be more detailed than simplerproeferences. Calculations performed can
include, for example, ordinary functions (such as sum orcatenate two or more properties’ values
before applying the aggregate function), and Boolean ¢immgi (e.g. count all male students whose
grades are greater or equal to 10).

2This research also deal with denormalisations, which isnddfusingpath expressiongcomponent of the
language ls).

Technical Report (draft)June 4, 2009

4. Inference Mechanism

This proposal provides an inference mechanism to autoatigtiofer a new perspective schema (see
Fig. 5(c)), given:
1. aset obrigin schemata and their associated perspective schemata, takéctiheorigin
schemata aBaseand the reference model &sget (see Fig. 5(a));
2. adestinationschema and its associated perspective schema, which mkefédrence
model ashaseand thedestinationschema atarget (see Fig. 5(b)).

In context of the Fig. 1, the perspective scheRa .5 . snc can be inferred taking asrigin
the schemat®,,...S,, as well as the perspective schemBia ryy,--., Psn rar, @nd asdestinationthe
schemaG as well as the perspective scheRgy -

The inferred perspective schema will havebasea subset obrigin schemata, and darget the
destinationschema. Itsrequire’ declarationswill be the sameérequire’ declarationspresent in the
perspective schema associated todbstinationschema. ThéMF signaturesand CAsof the inferred
perspective schema will be automatically generated usigeebased rewritten system.

(a)
[

I
;ﬁ + Perspectives of (c)
view of source source schema to
schema — reference model i
eference mode T - Perspective of
e source schemata
(b) to global schema
’_ﬁ)
Global schema reference model to

Perspectives of
global schema

Figure 5: Sketch of the inference mechanism.

The rule-based rewriting system is formed by a set of rulesgahe general form:

X=Y
Rule: ~

(readX is rewritten inY if Z is valid), 4

In (4), Ruleis the name of the ruleX andY can be formed by any of the following expressions: a CA
pattern expression, a MF pattern signature, or a comporagtarp expression. CA pattern expressions
and MF pattern signatures are expressions conforming th thesyntax to declare, respectively, CAs
and MF signatures, being that some of their elements arablas to be used in a unification process.
Component pattern expressions are expressions confotmithg Lg or the Lpg syntaxes to represent
properties, path expressions, functions with n-ary argusmevalues, or conditions of selection (predi-
cates), being that some of their elements are variablesusdxin a unification proces&.is a condition
formed by a set of CA pattern expressions, or expressiorfsedirms: a)A = B such thatA andB are
component pattern expressions; BK(C,.,C’,.) such thatFK is a foreign key name of a class/relation
C that refers to a class/relation’;&) p:iC € type(C'), such thatp is a property name declared in a
class/relation Cthat refers to a class €CA pattern expressions, MF pattern signatures, and conmpone
pattern expressions are formally defined in the followingd.te

3type() is a function defined in languagelthat returns the structural type of a relation/class.

Technical Report (draft)June 4, 2009

Definition 1 (CA pattern expression) Let be a set of correspondence assertions defined in language
Lps. A CA pattern expression is an expression having the gefanal:

K—L
with K and L being variables that can be instatiated with pedively, the left-side and the right-side of
a correspondence assertiane A.

Definition 2 (MF pattern signature) Lef a set of data types and a set of schemata. A MF pattern
signature is an expression having one of the following forms

match : ((S1 [Ci],71) x (S2 [Ca] ,72)) — Boolean

match : ((i Ci],mi) x ([Cz (pred)})) — Boolean

match : ((S1[Ca] (P 71, Wt 7'a}) (82 Col o, B 74, By 7))) — Boolean

match : ((S1 [Ca] 71, 4P 71, B T'a}) (S2 [Co (pred) | oo, (Y s 71, s 7h})) —
— Boolean

With S; and S, being variables that can be instatiated with any of the scitarhelonging to’; C; and

C, being variables that can be instantiated with any clasatieh of the schemata belonging £ pred
being a variable that can be instantiated with a predicate ¢efined in les); p; andp/, for 1 <i <

n, are variables that can be instantiated with any propefta alass/relation of the schemata belonging
to L£; 71, o, i, 7, for 1 <i < n, are variable that can be instantiated with data types beging to

T (defined in schemata belonging £9.

Definition 3 (Component pattern expression) L&be a set of schemata. A Component pattern expres-
sion is a expression formed by a single variable that can bmittiated with a predicatpred; or is an
expression having one of the following forms:

°
[SElke)

21

o 1n

=
=
=

= 10 16
o
Ao
19 o
s

With S being a variable that can be instatiated with any of the sctenbelonging tol; C; and C
being variables that can be instantiated with any clasatieh of the schemata belonging £o ¢ being

a variable that can be instantiated with a (value or refer@npath expression as defined ig;L/; being

a variable that can be instantiated with a link of a path exgsien; p and p” being variables that can
be instantiated with any property of a class/relation of #uhemata belonging td, being thatp” is
part of the structural type gb; being a variable that can be instatiated with any functiothwi > 1
arguments that returns a value; and;, 1 < i < n, being variables that can be instantiated with other
component pattern expressions.

Technical Report (draft)June 4, 2009

A condition Z is valid when all of its expressions are valid: a) the CA patexpression is valid if
there is a CA, which is declared in one of the perspectiversale associated to tlogigin schemata or
the destinationschema, that unifies with it; b) the expression of the férm- B, such thatA andB are
component pattern expressions, is valid if there is a rulehvhnifies with it and which is recursively
applied; c) the expression of the forfaK,C,,C’,.) is valid if there is a foreign key declaration declared
as required in one of the perspective schemata associathd doigin schemata that unifies with it; d)
the expression of the form:iC € type(C') is valid if there are both a class/relation and a properyh b
declared as required in one of the perspective schemateaiagsbto theorigin schemata, that unify with
them. A formal definition of a valid condition is as follows:

Definition 4 (Valid condition (in an inference rule)) Lezfip be a set of perspective schemata adg
a set of correspondence assertions declared in some pergpeschema belonging tﬁp. Let also
{X1, Xy, ..., X,,} be a condition Z in an inference rule. Z is a valid conditidifdfr each X%, 1 <i <n,
if:
e X; is a CA pattern expression, then there ié)& A; that unifies with X
e X; is an expression the form A& B, such that A and B are component pattern expres-
sions, then there is an inference rule that unifies withwkose condition is a valid
condition,
e X; is an expression of the forn¥K,C,_,C’,_) then there is a foreign key declaration, as
defined in lg, declared as required in some perspective schema belorlgilzfg, that
unifies with X
e X; is an expression of form:jC < type(C’), then there are both a class/relation and a
property, both declared as required in some perspectiversehbelonging tfp, such
thatp:iC € type(C').

WhenX andY are CA pattern expressions, the rule are rewritten-rulaisrédwrite CAs in other CAs
(RR-CAs). WhenX andY are MF pattern expressions, the rule are rewritten-rulasréwrite MFs in
other MFs (RR-MFs). WheX andY are component pattern expressions, the rule are sulmtitutles
that rewrite components in other components (RR-Cs). Tiher lare used as an intermediary process by
the RR-CAs and RR-MFs.

An example of a RR-CA is as follows:

Pru|D [C_D} — RM [ﬂ} = Psip [C_D} —K*

RR-CA1:
Ps|rm [ﬂ} — K5

(5)

In (5) all variables are indicated by an underliri2is thedestinationschemaRM is the reference
model schema, andl is a variable that will be instantiated with some of thiégin schemata. € is a
variable that will be instantiated with a class/relatiorttdd schem®; mutatis mutandis to 8. K is a
variable that will be instantiated with the right side of a @éttern expression of extension. The letter S
in K means that all elements in that expression belong to sciSeMke value ofS andK will depend
on which CA, that is declared in the perspective schema m¢eddo somerigin schemata, will unify
with the condition of the rule. The notation in (5) will be dsthrough the paper to explain examples of
rules.

The ruleRR-CA1 rewrites an ECA of equivalence, which connects a classibel&” of the desti-
nationschema to a class/relation’®! of the reference model schema, into an ECA, which connect the

Technical Report (draft)June 4, 2009

10

class/relation € to a class/relation € of someorigin schema; when is provided an ECA that connect
the class/relation € to C5.

An example of a RR-MF is as follows:

match : ((RM [ﬂ} ,ﬂ) X (D [Q ,ﬂ)) — Boolean=
S [C_S} ,ﬁ) X (D [C_D} ,ﬂ) — Boolean

match :

RR-MF1: (6)

Psirm [ﬂ} — S [C_S}

In (6) 7 is a data type. The rulRR-MF1 rewrites a match function signature, which matches a
class/relation &M of the reference model schema to a class/relati®ho€the destinationschema, in
a match function signature that matches a class/relatibnfGomeorigin schema to the class/relation
CP, when is provided an ECA of equivalence that connects thssgteation & to C°.

An example of RR-C is as follows:
RM {CRM} o piM — AS

P [C] o g — AT v

RR-C1:

In (7) p*™ is a variable that will be instantiated with a property of ass/relation and is a variable
that will be instantiated with a component pattern expmssiSimilar toK* in (5), the letter S inA®
means that all elements into that expression belong to stlferfihe value ofS andA will depend on
which CA declared in the perspective schema associatednte sdgin schemata will unify with the
condition of the rule.

The ruleRR-C1 rewrites a propertyp”™ of a class/relation of the reference model schema in a
property, a path expression, or a function of sarigin schema, when is provided an PCA that connects
the propertyp™ to this property, path expression, or function. The whoteo§@roposed rules can be
found in appendix A.

1: procedur e INFER_.CAS(A® — ARM (' As)

2: repeat _
3 find A® — AS applying the inference rul eR:
4: R:AGHARM:>AG—>ASi.

conditions !

5: add A® — AS't 0 C'As;
6: until all rules for rewiting CAs have been tested
7: end procedure

Figure 6: The pseudo-code to the inference mechanism togengew CAs.

A pseudo-code detailing as new CAs are deduced is shown ir6Fig Fig. 6,G is thedestination
schemaRM a reference model schema, a®g i > 1, origin schemata. The algorithm tries to find, for
each CAA® — ARM assigning the global schema to the reference model scheraayranore CAAC
— AS' as a result of applying t6¢ — ARM some rule for rewriting CAs. Notice that, in the condition
of the rule can exists expressions of the folms- B. In this case, the recursivity will be present. For
instance, a new ECA:

Technical Report (draft)June 4, 2009

11

Ps1/ [CUSTOMER — S1[CUSTOMER

can be created based @i (see Fig. 4), using the rulBR-CAL1 since that the CAJg is defined in
perspective schenRg;| rys (@s shown in Fig. 7).

Extension Correspondence Assertion (ECA)
Y6 Psijrm [CUSTOMER — S1[CUSTOMER
Y7. Psarm [CUSTOMER — S2 [CUSTOMER

Figure 7: More examples of correspondence assertions.

A pseudo-code detailing as new MF signatures are deducédvuasin Fig. 8. In Fig. & andL are
pairs (classes/relations, data type) of the reference hsatiema or of thelestinationschema, while<’
andL’ are pairs (classes/relations, data type) of soniggn schemata or of theestinationone. For each
MF M that is declared in the perspective schema associated de#tieationschema, the algorithm tries
to find one or more MFs as a result of applyingdosome rule for rewriting MFs. For instance, two new
MF signatures:

match((S1[cUuSTOMER],m)x(G[CUSTOMER,72))—Boolean
match((S2[cusTOMER},m;) x (G|CUSTOMER),72))—Boolean

can be created based on MF signature presented in Fig. 8 tsrruleRR-MF1 twice, since as the
CAs ¢ andy; are defined, respectively, in perspective schemRatar,, andP gz (@S shown in
Fig. 7).

1: procedur e INFER_MFs(match(K xL)—Boolean)M F's)

2: r epeat
3: find match(K xL') —Bool ean applying the inference ruleR:
4 R.mat ch(KxL) —Bool ean=nat ch(K xL’') —Bool ean.
) : condi tions !
5: add mat ch(K xL’) —Bool ean to M F's;

6: until all rules for rewiting Ms have been tested
7: end procedure

Figure 8: The pseudo-code to the inference mechanism toaengew MFs.

A pseudo-code with the iteration of the process to generatewaperspective is shown in Fig. 9.
In Fig. 9 Pr is a perspective schema from the reference model to the Igbabhama;P;, 1 # j # n,
are perspective schemata from source schemata to thermredemeodel; and?; is the inferred perspec-
tive schema from source schemata to the global schema. ekiiazits of the perspective schemata are
grouped in lists:classList, relationList, keyList, caList, andmf List. The three first lists hold
‘require’ declarations of, respectively, classes, relatj and keys and foreign keysalList contains
correspondence assertion declarations,rarid.ist has match function signatures.

This mechanism has been developed as part of a proof-okpbpcototype using a Prolog language.
Beside the inference mechanism module, the prototype stapfsinore five modules, such as thehema
manager and thed SCO translator Theschema managenodule is employed by the designer to manage
the schemata (in language;Las well as the perspective schemata (in languagg.LThelSCO trans-
lator performs the mapping between schemata writtengrot L pg languages to schemata defined in a
language programming calledfbrmation_§stems C@struction language (ISCO) [9]. ISCO is based

Technical Report (draft)June 4, 2009

12

1: procedur e GENERATENEWPERSPECTIVE Py, Py, ..., P, Pr)
2 for each CAA® — ARM i n Pr.caList do

3 i nf er CAs(A® — ARM [AG _, ASIYy:

4 add CAs AC® — ASit 0 Pj.caList;

5: end f or

6: for each MF min Pr.mfListdo

7 i nfer MFs(m{m ;});

8 add MFsm ;to Pr.mfList

9

: end f or
10: for each Ei n classList/relationList/keyList do
11: create a require declaration to Py
12: add it, appropriately, to Pr.classList/
13: Pr.relationList/Pr.keyList

14: end f or
15: end pr ocedur e

Figure 9: The pseudo-code to the creation of inferred petisjgeschemata.

on a contextual constraint logic programming that allovesadbnstruction of information systems. It can
define (object) relational schemata, represent data, andgarently access data from various heteroge-
neous sources in a uniform way, like a mediator system [10QsT it is possible to access data from
information sources using the perspective schema in IS@@h&more, once the perspective schema
from source schemata to the global schema has been infageauell as the new match functions have
been implemented, it can be translated to ISCO language atitesdata of the global schema can be
queried.

5. Related work

The database community has been for many years engagedheitirablem of data integration.
Researches on this area have developed in several impditactions: schema matching, data quality,
to cite a few (see [11] for a survey), which can cover différarchitectures (e.g. FDBSs and DWSs),
representation of data and involved data models (e.g.ioritand non-structured). Recent research
in Federated Database Systems (FDBSs) has included: behaniegration [12], integration of non-
traditional data (e.g biomedical [13, 14], intelligenceadfl5], and web source [16]), interactive inte-
gration of data [17, 18], and federated data warehousersgdtE9]. All these approaches use a global
schema, but do not deal with a reference model schema. 8intitee authors’ research of the current
paper, [16] uses correspondence assertions (in this aasepécifying the semantics of XML-based
mediators). However, their CAs only deal with part of the aatit correspondence managed here. Fur-
thermore, they assume that there is a universal key to detenvhen two distinct objects are the same
entity in the real-world, which is a supposition often utrea

Researches in Data Warehouses (DWSs) have focused on telcasjects such as multidimensional
data models (e.g. [20, 21, 22, 23, 24, 25]) as well as the mfsed view definition and maintenance
(e.g. [26]). In particular, the most conceptual multidireiemal models are extensions to the Entity-
Relationship model (e.g. [27, 28, 29, 30]) or extensions kLe.g. [31, 32, 33]).

Reference in [34] focuses on an ontology-based approacletardine the mapping between at-

Technical Report (draft)June 4, 2009

13

tributes from the source schemata and the DW schema, assaelidentify the transformations required
for correctly moving data from source information to the DWieir ontology, based on a common vo-
cabulary as well as a set of data annotations (both provigddeodesigner), allows formal and explicit
description of the semantic of the sources and the DW scleentdbwever, their strategy requires a
deep knowledge of all schemata involved in the DW system,hHatis usually not an usual task. In the
proposed research of the present paper, it is dispensaie, sach schema (source or DW) needs to
be related only to the reference model one. Additionally3i there is nothing about the matching of
instances.

The approach closest to authors’ research is described]n Emilar to this study, their proposal
includes a reference model (cited as “enterprise modebigied using an iriched_Etity-Relationship
(EER) model. However, unlike the authors’ research, alf thehemata, including the DW schema, are
formed by relational structures, which are defined as viewgs the reference model. Their proposal pro-
vides the user with various levels of abstraction: conaplogical, and physical. In their conceptual
level, they introduce the notion of intermodel assertidrat precisely capture the structure of an EER
schema or allow for the specifying of the relationship betwediverse schemata. However, any transfor-
mation (e.g. restructuring of schema and values) or mapgiimgstances is deferred for the logical level,
unlike the current work. In addition, they did not deal withntplex data, integrity constraints, and path
expressions, as this research does.

6. Conclusions and future works

In this paper, the authors have presented a proposal to atitatty connect a global schema to its
sources by using an inference mechanism taking into ac@rtaference model. In proposed approach
the relationship between the global schema and the souneensda is made explicitly and declaratively
through correspondence assertions. This approach isuydarty useful in data integration systems that
define a common or canonical schema, such as in Data WareloUWgesystems and in Federated
Database (FDB) systems. An advantage of the proposed abpi®that by using the reference model
the designer user does not need to have a deep knowledgadfathata involved in the DW system or in
the federation system, since that each schema (sourcel@igieeeds to be related only to the reference
model one. Thus, the designer user can describe the glosi@nsywithout concerns about where the
sources are or how they are stored. Besides, the procestadhtgration can be incrementally done in
two sense:

1. View schemata can be created as an intermediary proceskit® portions of data that
have been integrated (those view schemata, in turn, atedeia the reference model).
Thus the data integration process can be divided in smal,gastead of being seen as
a whole, turning the integration task easiest.

2. New source schemata can be added or actual source schemanataentually change.
It is completely transparent to the DW systems or FDB systeimse the relationship
between the global schema and its source schemata is aigaltyatreated by the in-
ference mechanism.

A prototype Prolog-based has been developed to allow th&igéen of schemata and perspective
schemata in the proposed language as well as to infer newqudiksee schemata based on other ones.
The matching functions can be implemented using Prolodf iseexternal functions. In addition, the
prototype include translators from the proposed languagbe ISCO one. ISCO [9] allows access to

Technical Report (draft)June 4, 2009

REFERENCES 14

heterogeneous data sources and to perform arbitrary catigngd. Thus, user-queries can be done, in a
transparent way, to access the information sources, likereén mediator systems [10].

For future work, investigations will be made into how thegmarctive schemata can be used to auto-
mate the materialisation of the data in the DWs or in otheos#pry of a data integration environment.
Another important direction for future work is the develogmh of a graphical user-friend interface to
declare the schemata in the proposed language, and thudetedme syntax details.

References

[1] Claudia Imhoff, Nicholas Galemmo, and Jonathan G. Geilfastering Data Warehouse Design -
Relational and Dimensional Techniqued/iley Publishing, 2003.

[2] Valéria Magalhaes Pequeno and Joao Carlos GomesavRives, “Using perspective schemata to
model the ETL process”, ilCMIS 2009 :Intl. Conf. on Management Information Systefnance,
June 2009, to appear.

[3] Edgar F. Codd, “A relational model of data for large shibadata banks”, irtCommunications of the
ACM, 1970, pp. 377-387.

[4] Rick G.G. Cattell and D. Barry, EdsThe Object Database Standard ODMG 3Morgan Kauf-
mann Publishers, 2000.

[5] Valéria Magalhaes Pequeno and Joao Carlos GomesdvRites, “A formal object-relational data
warehouse model”, Tech. Rep., Universidade Nova de Liddoaember 2007.

[6] Valéria Magalhaes Pequeno and Joao Carlos GomesavRives, “Using perspective schemata to
model the ETL process”, Tech. Rep., Universidade Nova diedais20009.

[7] G. Zhou, Richard Hull, and Roger King, “Generating datgegration mediators that use material-
ization”, J. Intell. Inf. Syst.vol. 6(2/3), pp. 199-221, May 1996.

[8] Ramez Elmasri and Shamkant B. NavatRendamentals of database systerasarson Education,
5th edition, 2006.

[9] Salvador Abreu and Vitor Nogueira, “Using a logic progmaing language with persistence and
contexts”, inNINAP’05: 16th Intl. Conf. on applications of declarativeggramming and knowledge
managemenk006, vol. 4369 ofecture Notes in Computer Scienpp. 38—47, Springer, (Revised
Selected Papers).

[10] G. Wiederhold, “Mediators in the architecture of fugiinformation systems”, ifEEE Computer
1992, vol. 25(3), pp. 38—-49.

[11] Alon Y. Halevy, Anand Rajaraman, and Joann J. OrdillBata integration: The teenage years.”,
in VLDB, 2006, pp. 9-16.

[12] Markus Stumptner, Michael Schrefl, and Georg Grossméadm the road to behavior-based inte-
gration”, inAPCCM: First Asia-Pacific Conf. on Conceptual Modelljri2p04, pp. 15-22.

[13] Brenton Louie, Peter Mork, Fernando Martin-SanchelgnAalevy, and Peter Tarczy-Hornoch,
“Data integration and genomic medicineJpurnal of Biomedical Informati¢ssol. 40, pp. 5-13,
2007.

Technical Report (draft)June 4, 2009

REFERENCES 15

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Pavithra G. Naidu, Mathew J. Palakal, and Shielly Haiga“On-the-fly data integration models for
biological databases”, IBAC'07: Proceedings of the 2007 ACM symposium on Appliegating,
USA, 2007, pp. 118-122, ACM.

S. Yoakum-Stover and T. Malyuta, “Unified architectdoe integrating intelligence data”, in
DAMA: Europe Conf.UK, 2008.

Vania Maria Ponte Vidal, Bernadette Farias Losciogd @na Carolina Salgado, “Using corre-
spondence assertions for specifying the semantics of XEketd mediators”, iWorkshop on
Information Integration on the WeR001, vol. 3(11).

Zachary G. lves, Craig A. Knoblock, Steven Minton, Madacob, Partha Pratim Talukdar, Rat-
tapoom Tuchinda, Jos Luis Ambite, Maria Muslea, and CenkeBaZinteractive data integration
through smart copy & paste.”, i@IDR:4th Biennial Conference on Innovative Data Systems Re
search 2009, www.crdrdb.org.

Robert Mccann, Anhai Doan, Vanitha Varadarajan, andKE&mnik, “Building data integration
systems via mass collaboration”, WebDB: Intl. Workshop on the Web and DatabaddSA,
2003.

Stefan Berger and Michael Schrefl, “From federated lukdas to a federated data warehouse
system”, inHICSS '08: 41st Annual Hawaii Intl. Conf. on System ScientA, 2008, p. 394,
IEEE Computer Society.

Dov Dori, Roman Feldman, and Arnon Sturm, “From conaapmodels to schemata: An object-
process-based data warehouse construction methafd'Syst, vol. 33, no. 6, pp. 567-593, 2008.

E. Malinowski and E. Zimanyi, “A conceptual model f@nhporal data warehouses and its transfor-
mation to the ER and the object-relational modeB3ta knowl. eng.vol. 64, no. 1, pp. 101-133,
2008.

Juan Manuel Pérez, Rafael Berlanga, Maria José Buam and Torben Bach Pedersen, ‘A
relevance-extended multi-dimensional model for a dataeh@use contextualized with docu-
ments”, inDOLAP’05: Proc. of the 8th ACM Intl. Workshop on Data Waresiog and OLAR
USA, 2005, pp. 19-28, ACM.

Matteo Golfarelli, Vittorio Maniezzo, and Stefano Riz “Materialization of fragmented views in
multidimensional databasesData Knowl. Eng.vol. 49, no. 3, pp. 325-351, 2004.

Bodo Husemann, Jens Lechtenborger, and GottfriedevpsSConceptual data warehouse model-
ing”, in Design and Management of Data Warehoy2890, p. 6.

S. Rizzi, “Conceptual modeling solutions for the datarghouse”, In Data Warehousing and
Mining: Concepts, Methodologies, Tools, and Applicatjord. Information Science Reference,
pp. 208-227, 2008.

Robert Wrembel, “On a formal model of an object-oriehtiatabase with views supporting data
materialisation”, inProc. of the Conf. on Advances in Databases and Informatj@mteghs 1999,
pp. 109-116.

Enrico Franconi and Anand Kamble, “A data warehouseceptual data model"Proc. of the Int.
Conf. on Scientific and Statistical Database Managemeit 00, pp. 435-436, 2004.

Anand S. Kamble, “A conceptual model for multidimensi data”, inAPCCM’08: Proc. of
the 15th on Asia-Pacific Conf. on Conceptual Modellidgistralia, 2008, pp. 29-38, Australian
Computer Society, Inc.

Technical Report (draft)June 4, 2009

REFERENCES 16

[29] Carsten Sapia, Markus Blaschka, Gabriele Hofling, Barbara Dinter, “Extending the E/R model
for the multidimensional paradigm”, iRroc. of the Workshops on Data Warehousing and Data
Mining, 1999, pp. 105-116.

[30] Nectaria Tryfona, Frank Busborg, and Jens G. Borchgs@iarisen, “starER: a conceptual model for
data warehouse design”, DOLAP '99: Proc. of the 2nd ACM Intl. Workshop on Data waresiog
and OLAR USA, 1999, pp. 3-8, ACM.

[31] Sergio Lujan-Mora, Juan Truijillo, and Il-Yeol SongA UML profile for multidimensional mod-
elling in data warehousesData Knowl. Eng.vol. 59, no. 3, pp. 725-769, 2005.

[32] T.B. Nguyen, A. Min Tjoa, and Roland Wagner, “An objecismted multidimensional data model
for OLAP”, in Web-Age Inf. Managemer000, pp. 69-82.

[33] Juan Trujillo, Manuel Palomar, and Jaime Gomez, “Apudyobject-oriented conceptual model-
ing techniques to the design of multidimensional databaseisOLAP applications”,WAIM’00.
Lecture Notes in Computer Science (LNG®). 1846, pp. 83—94, 2000.

[34] Dimitrios Skoutas and Alkis Simitsis, “Designing ETlkqzesses using semantic web technolo-
gies”, inDOLAP’06: Proceedings of the 9th ACM international workshan Data warehousing
and OLAR USA, 2006, pp. 67—74, ACM.

[35] Diego Calvanese, Luigi Dragone, Daniele Nardi, RidcaRosati, and Stefano M. Trisolini, “En-
terprise modeling and data warehousing in TELECOM ITALIAf. Syst, vol. 31, no. 1, pp. 1-32,
2006.

Technical Report (draft)June 4, 2009

17

APPENDIX

A. Inference Rules

Hereafter, condider the following notation:

L is a set of schema names.

L, is a set of perspective schema names.

ﬁp is a set of perspective schemata.

W is a set of typed values.

7T is a set of data types.

D is thedestinationschemaRM is the reference model schema, & @ a variable that
can be instantiated with any of tloeigin schemata.

CP is a variable that can be instantiated with any class/oelaif the schem®; mutatis
mutandis to &M and C.

Pru|p € L, is @ perspective schema name, WRM being thebaseschema and the
targetschema, mutatis mutandis tg B and Py zy;-

All variables are indicated by an underline.

A.1l. Substituition-rules

The following notation will be used in this Section and thghuhe paper to explain rules:

Ais a variable that can be instantiated with a componentpatbepression, being that
the letter S inA° means that all elements into that expression belong to szi8&m
mutatis mutandis té\/**

pf*M is a variable that can be instantiated with any property ofaasérelation of the
schemaRM, mutatis mutandis tp®.

o is a variable that can be instantiated with a (value or refak path expression as
defined in Lg, being that the letter S in® means that all elements into this expression
belong to schem8, mutatis mutandis te’**.

¢; are variables that can be instantiated with a links of a pgpinession, being that the
letter S in¢¥ means that this element belong to scheSnanutatis mutandis té/*"/.

pred is a predicate as defined inpk, beingop operands ipred such thatop € {<
,>,<,>,#,=} andB is an expression ipred such thaB = Aor B=w, withw € W.
The letter S inpred® andB® means that all elements into those expressions belong to
schemaS, mutatis mutandis tpred ™" andB?M

p is a variable that can be instatiated with any function with b arguments that returns
a value.

FK is a foreign key name.

The expressiop: 1C means that the type of the propeptis a reference to the class C.
type() is a function defined in languageslthat returns the structural type of a rela-
tion/class.

The substituition-rules are formed by 12 rules as follows:

Technical Report (draft)June 4, 2009

A.1 Substituition-rules 18

RM [CFM] o pR = AS

RR-C1: 5 [CRM} T
S|RM °p — A2

RM {CRM} o oM = S[C*] e o°
RR-C2:

fﬁ“{ =2, foro<i<n-—1,
Ps|ra [CgM] opM S [C_s] o p®

RM {CRM} o QRM = S[C] .Q_S

RR-C3:
O =05, for0<i<n—1

f(A{%M’AQRMw"?AgM) if(ﬁ’A_g”ig)

ARM — A5 for1 <i<n

RR-C4:

RM{ } p"M{p} = A for1<i<n

RR-C5: S T 5 3
P§|RM{ } P {1, P2, - ,pn}—>(A1,AQ An)

RR-C6:w=w

ARM op BEM = A op B®
ARM — A5,
BfM — BY

RR-C7:

RR.C8 ARM op BFM andpred™ = A% op BYandpred®
' ARV = AT,
BM = B,
pred® = pred”

ARM op BEM orpred® = AS op B® orpred®
RRCY: - AFM A, -~ -
BfM = BS,
pred® = pred”

pRM . CRM —DCRM = pS . CS —DCS
RR-C10: —= 7 3
Psims C ep™ — s[c5]aps,

p® 1 {Cy € type(C®)

Technical Report (draft)June 4, 2009

A.2 rewritten-rules to rewrite CAs

19

(RM CRM o CFM = FKS : C5 - CF

RR-C11:
Psirur |CFM] — s|C5)],
(FK®,C%,_,CY,)
FKAM . CAM M = p¥: C% »CY
RR-C12: —_—

Psirm [ﬂ} — S [_S} ;
Ps|rar [ﬂ} — S [Cﬂ ;

p% 1 4C7 € type(CY)

A.2. rewritten-rules to rewrite CAs

The rules to rewrite CAs are subdivided in four groups in agaoce to kind of CA involved. Thus,

there are rules for rewriting PCAs, ECAs, SCAs and ACAs, Wiate presented in following text.

A.2.1. rewritten-rules to rewrite PCAs

Consider the following notation to describe the RR-PCAs:

e G’ is a variable that can be instantied with the right side of ap@#ern expression of
property consisting of one of two formsA{, A5, ..., AS) or (Bf ,pred?), (B5 ,predy),

., (BS_predy_), BY.

The RR-PCAs are formed by five rules as follows:

Prup [C_D} op” — ARM Psip [C_D} op’ —A°
RR-PCAL: — ~

ARM — AS

Pru|p [C } e pP — RM [CRM} o pM = Py p [C } op? -G

RR-PCA2:
Psirm [C M} op -G

Prarip [C2] © {1, Ba, P} — (AT, APY, . ATV =

Psip [C_D} o p”{p1, P2, P} — (A;f’A_g”iS)
RR-PCA3 AT S A for 1< i <
RR-PCA4: P (2] o p” — (APM ATM. . ATM) = Pyp [CP] e p” — (AF.AS. ... A])

AFM — A for1 <i<n

Technical Report (draft)June 4, 2009

A.2 rewritten-rules to rewrite CAs 20

0 (B o) (B prea) . (B, proc) "

PS‘D[}op —»(Bf,pred) (B_g,%);...;(S pred?),B_ﬁ

BiM = BY pred™ = pred;, for1 <i<n

RR-PCAS:

A.2.2. rewritten-rules to rewrite ECAs

Consider the following notation to describe the RR-ECAs:

e Kis a variable that can be instantiated with the right side GRapattern expression of
extension, being that the letter SKr? means that all elements in that expression belong
to scheméb.

e ¢is any operand appearing in a ECA, i-e,N, or <.

e C;, for 1 <i < n, are class/relation names in some schema belongiﬁg to

The RR-ECAs are formed by four rules as follows:

PruviD {C_D} — RM {ﬂ} = Psip {C_D} — K

RR-ECAL1 :
Psiry [ﬂ} — K5
RRECAZ: 17 €] — ru [CT (pred™)] = Py, |C7] — S |C” (pred®)]
Psrar [ﬂ} — S {C_S} :
pred™ = pred”®
Pra|D [CD} — RM [CRM (predRM =
Pgip [CP] — s[Cf (pred?)] o S [C5 (preds)| o ... S[CS (preds)]
RR-ECAS3:
Psirar [C™] — s[cf] o s[cS] o ... [_g}
pred®™ = pred?, for1 <i<n
Pruip [C_D} — RM {C{%M} o...oRM {CﬁM (predRMﬂ ..0RM {%} =
Psip [C_D} — K oKS o, .. on(predJS)o. oK
RR-ECA4 : —_— — N T Dn

RM
Ci

RM
=i

Ps|ru — K, for1<i<j-1,j+1<i<n,

Ps|rm

— C_f,predfM = pred?

A.2.3. rewritten-rules to rewrite SCAs

Consider the following notation to describe the RR-SCAs:

e X is a variable that can be instantiated with a propgrtyr a path expression or a
propertyp’ into another propertyp (a structured type) (notatiom{p’}).

Technical Report (draft)June 4, 2009

A.2 rewritten-rules to rewrite CAs 21

e Qis a variable that can be instantiated with the right side Gffapattern expression
of summation, being that the letter S@Y means that all elements in that expression
belong to schem8.

e 1} is a variable that can be instantiated with the keywanadsipbyor normalize the two

possible kinds of SCA.
e p;, for 1 <i < n, are property hames belonging to classes/relations ire smnema

belonging toL.

The RR-SCAs are formed by four rules as follows:

Prarp|CPJ(pD. - p2) — I(RMICRM (XTI o(ARM . ATM), . X))
PS|D[}(pl, ..,@)_@(g[c_ﬂ X5, oA, AD), . X))

RR-SCAL:
Payns [— S[CY]
RM{@} oﬂ:>§[c_s}o&5, forl <i<n,
A, A= (AT, AY)
PRM|D[Kpl ,...,ﬁ) HQ(RM[ﬂ(predRMﬂ(X{W,...,f(ﬂ,...,ﬂ),...,
XY
AR.SCA. PSP 2] (pP,....pR) —0(S|C¥ (pred”)| (X5, ..., p(AS, ... A), ..., X5)
Psirm [ﬂ} — S [C_S})
pred®™ = pred?®,
RM [ﬂ}oﬂ:>§[c_s}oﬁ, forl1 <i<n,
A, A= (AT, AY)
RR-SCAZ: V1P €7 — rm [C™] = Py [CP] (P, .p3) — &
P§|RM ﬂ} (ﬂ,,pn—) —>Q,
Pru|p C_D}oﬁ—mm [ﬂ}oﬂ, forl<i<n
Pra|p {CDJ — RM {CRM (predRM”
RR.SCA. Psip [CP] (pD...-.p2) — 0 (S[C¥ (pred®)| (Xf,....0 (A, .. AS),....X5))

Psirm [ﬂ} (ﬂ,m,ﬂ) — (S [C_S}(X_f,...,@(A_f,...,ﬁ),...,&s))
pred®™ = pred?®,
PruD {C_D} ep’ —RM {ﬂ} opfM for1<i<n

A.2.4. rewritten-rules to rewrite ACAS

Consider the notation used to define the rules RR-PCAs. Alasider the following notation:

e ~is avariable that can be instantiated with one of the aggjmgéunctions (sum, count,
min, max, avg) used in SCAs.

Technical Report (draft)June 4, 2009

A.2 rewritten-rules to rewrite CAs 22

e scais a variable that can be instantiated with the name of theeisze SCA asigned to
an ACA.

The RR-ACAs are formed by eight rules as follows (the firstreies are to rewrite ACAs related to
SCA of normalisation, while the last two rules are to rewAt@As related to SCA of group by):

Pra|p {CD} o p? — sca A™M = Py, [} p” — sca A5

RR-ACA1 : ARM 5 AS
Pru(p [C } e p” — scarM [CRM} o p™M = Py p [} p” —scaG®
RR-ACA2 :
Ps|r [ﬂ} o p™M . &
Pru|D [C } pP{p1.p2, ..., Pn} — sSCa (A{%M7A§M7---7A§M) =
PS|D{ } op {pl,pg,...,p_n}H%(A_f,A_g,...,ﬁ)
RR-ACA3S :
ﬂiﬁ, foril<i<n
Pru|D {Q o p” — sca (A{%MvAng--?AgM) =
P [C7] g — sca (47)
RR-ACA4 . D —
ﬂiﬁ, fori<i<n
Pruv (D {Q ep” — sca (BRM, predRM) (BRhlv pred ﬂ) ;B =
P§|D[}o — sca (Bf,pred) (S | pred”) BY
RR-ACAS : BRM — BS —
predRM = pred?, for1 <i<n
PRJmD [C } op — RM [CRM} OpRM = P§|D [Q} opD Hia’@
RR-ACAG : — —
Ps|ry [ﬂ} o p™ — sca G®
RR-ACA7 ; 17 %) «p” — scay (':ZZ):’AZS'D 2] ep” — scay (&)
RR-ACAS ; 17 (C2] o p” — scay (AT, pred™) + Pyp [CP] o p” — sca (A pred®)

ARJWZ>A;S,
pred®™ = pred®

Technical Report (draft)June 4, 2009

A.3 rewritten-rules to rewrite matching function signatur es 23

A.3. rewritten-rules to rewrite matching function signatures

Consider the following notation to describe the RR-MFs:

e Y is a variable that can be instantiated with a component npagepression of forms:

S[C*]ep® or p(S[C°Jep®); being that the letter S iv® means that all elements into
that expression belong to sche®a

S, and S, are variables that can be instantiated with distinct scheamaes belonging
to L.

CP, for 1 < i < n, are variable that can be instantiated with any classibelaf the
schemaD; mutatis mutandis to £ and .

pliM for 1 < i < n, are variables that can be instantiated with any propeftst o
class/relation of the schen®iM, mutatis mutandis tp? andp?.

7 andr; are variable that can be instantiated with any data typengéig to7", being
that the letter S inr® (and 77) means that the type was described in the sch&ma
mutatis mutandis te*M, 7 EM D andrP.

E is a variable that can be instantiated with a class/relatith a selection condition
(notation: Cpred)) or without a selection condition (notation: C), beingtttize letter
D in EP means that all elements into that expression belong to scBem

The RR-MFs are formed by seven rules defined as follows:

RR-MF1 :

RR-MF2 :

match : ((RM [ﬂ} ,ﬂ) X (D [E} ,ﬂ)) — Boolean=

match : ((§ [C_S] ,ﬁ) X (D[E],TD)) — Boolean

Ps|rm [ﬂ} — S [C_S} ;

75 = type(CY)

match : ((RM [ﬂ} ,ﬂ) X (RM [ﬂ} ,ﬂ)) — Boolean=

match : ((i [C_fl} ,il) X (&[0_52],152)) — Boolean

Payrat [C1] — &1 [CF1]
Poarns [CV] — 82 (€52
i = type(CY),
75” = type(C5?)

,T_) X (D [Eﬂ ,i)) — Boolean=-

Eﬂ ,Té))) — Boolean

Technical Report (draft)June 4, 2009

A.3 rewritten-rules to rewrite matching function signatur es 24

match : ((RM [ﬂ} , 7 BM LpRM . RMC pRM EM}) X
x (D[EP] 2, {pP : 7P,....p2 : 7D})) — Boolean=
match : ((5[05} SApY il et g})x
X (D[P28 {pf : i ,...,p_n.ﬁ})) — Boolean
Psirm [ﬂ} — S [CS})

5 = type(CY),
PS|RM {CRM} o pfM — Yiforl <i<n,
p@ TP thpe(CS)forl <i<n

RR-MF4 :

match : ((RM [C{W} RM kM RM,...,pﬁM:TﬁM}) X
X (RM [Cé‘?M} ,THM fpltM s BM pltM 75,{”})) — Boolean=-
match : ((i [C*fl} 7'1 ,{p Ty ,,pLSlT_gl}) X
X (ﬁ [Ciﬂ 32 APt Ty ,...,p_fﬂ:r_fﬂ})) — Boolean
Psyru [CIV] = 81 [Cf].

1! = type(CP),
Pz (O] — 2[5

= type(C5?),

Psirar [CFM] o pfM — Y5l for1 <i <,

RR-MF5 :

P&\RM |:C§M:| .pé%ij\/f —>YL52for1 <i<n,
pil: 79t e type(CPY) for 1 < i < n,

pi? 9% e type(C3H for1 <i<n

macn: (0 [E7] 2200 o 0501
x (D {ED} 7£, {p_£)1:7'_§17'--=p2n -ﬁ}) — Boolean=-

match: ((D[EP]. 7P {pP: 7P.....p2 : 72} x

< (D [EF] .78, 9B 8. .ph. : 7Ru})) — Boolean

RR-MF6 :

Technical Report (draft)June 4, 2009

