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Abstract

One of leading issues in database research is to develop flexible mechanisms for providing integrated access to dis-

tributed, heterogeneous databases and other information sources. A wide range of techniques has been developed

to address this problem, the main drawback being the difficulty in developing a single (global) database schema

that captures all the nuances of diverse data types, and expresses a unified view of the enterprise. We deal with

this problem by taking a declarative approach, which is based on the creation of a reference model and perspective

schemata. The former provides a common semantic, while the latter connects schemata. This paper focus on

deduction of new perspective schemata using a proposed inference mechanism.

1. Introduction

One of the leading issues in database research is to develop flexible mechanisms for providing inte-
grated access to multiple, distributed, heterogeneous databases and other information sources. A wide
range of techniques has been developed to address this problem, including approaches based on cre-
ation of Data Warehouses (DWs), and Federated Database Systems (FDBs). DWs are highly specialised
database systems which contain the unified history of an enterprise at a suitable level of detail for de-
cision support. All data are integrated into, usually, a single repository, with a generalised and global
schema. A FDB enables a unified virtual view of one or more autonomous sources of information to
hide data heterogeneity from the applications and users. Tightly coupled FDB, those that occur in DWs,
provides a global schema expressed in a common, ”canonical”data model. Unlike a DW, a FDB leaves
data at the source.

One of the main drawbacks of these approaches is the difficulty in developing a single (global or
common) database schema that captures all the nuances of diverse data types, and expresses a unified
view of the enterprise. The designer should usually deal with incompatible data models, characterised by
subtle differences in structure and semantic. Besides, he/she should define mappings between the global
schema and the schemata of the source information. These problems are hardest to deal with because
of the rapid growing of the data volume and the data model complexity (both in sources and in global
schema), which implies the rise of the difficulty of managingand understanding these models [1].
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Figure 1: Proposed architecture.

In order to deal with this problem, it is proposed to take a declarative approach, based on the cre-
ation of a reference model and perspective schemata. A Reference Model is an abstract framework that
provides a common semantic that can be used to guide the development of other models and help with
data consistency [1]. A perspective schema describes a datamodel, part or whole (target schema), in
terms of other data models (base schemata). In Fig. 1, for instance,Ps′1|RM , ...,Ps′n|RM are perspective
schemata that map the reference model (RM) in terms of the source schemata.

In the proposed approach, the relationship between the baseschemata and the target schema is made
explicitly and declaratively through correspondence assertions. An advantage of the proposed approach
is that by using the reference model the designer does not need to map schemata each other. This effort is
theoretically reduced since schemata (source or global) must only align with the reference model, rather
than each participating schema. Besides, the designer doesnot need to have a deep knowledge of all
schemata involved in the DW system or in the federation system. Thus, the designer can describe the
global system without concerns about where the sources are or how they are stored. Furthermore, the
mapping between the global schema and its sources is automatically generated by an inference mech-
anism. This paper focuses on the deduction of new perspective schemata using a proposed inference
mechanism.

The remainder of this paper is laid out as follows. Section 2 presents an overview of the reference
model-based framework proposed in [2]. Section 3 briefly describes the language to define the perspec-
tive schemata. Section 4 details the process to infer new perspective schemata. Section 5 concisely
mentions representative works in data integration area. The paper ends with Section 6, which points out
the new features of the approach presented here and in ongoing or planned future work on this topic.

2. The framework

The proposal presented in [2] offers a way to express the existing data models (source, reference
model, and global/integrated schema) and the relationshipbetween them. The approach is based on
Schema language(LS) andPerspective schema language(LPS).

Schema language(LS) is used to describe the actual data models (source, reference model, and
global/integrated schema). The formal framework focuses on an object-relational paradigm, which in-
cludes definitions adopted by the main concepts of object andrelational models as they are widely ac-
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Figure 2: Motivating example.

cepted in literature – cf. [3, 4].

Perspective schema language(LPS) is used to describeperspective schemata. A perspective schema
is a special kind of schema that describes a data model (part or whole) (target schema) in terms of other
data models (base schemata). LPS mainly extends LS with two components: Correspondence Assertions
(CAs) and Matching Functions (MFs). Correspondence Assertions formally specify the relationship
between schema components. Matching functions indicate when two data entities represent the same
instance of the real world. LPS includes data transformations, such as names conversion and data types
conversion.

Fig. 1 illustrates the basic components of the proposed architecture and their relationships. The
schemataRM, S1,...,Sn andG are defined using the language LS and represent, respectively, the refer-
ence model, the source schemataS1,...,Sn, and a global schema. The schemataS’1 andS’2 are defined
using the language LPS. They are special kinds of perspective schemata (calledview schema), since
the target schema is described in the scope of a perspective schema, instead of just referring to an ex-
isting schema.S’1 andS’2 represent, respectively, the view schemataS’1 (a viewpoint of schemaS1),
andS’2 (an integrated viewpoint of schemataS2 andS3). The relationships between the target schema
and the base schemata are shown through the perspective schemataPs′1|RM ,..., Ps′n|RM ,PRM |G, and
Ps′1,s′2,...,s′n|G (denoted by arrows). In the current research, the perspective schemaPs′1,s′2,...,s′n|G can
be automatically deduced by the proposed inference mechanism. The next Section illustrates, through
the examples, the language LPS, and the Section 4 presents the proposed inference mechanism. For a
more detailed and formal description of LS and LPS languages, the reader is referred to [5, 6, 2].

3. Perspective Schema Language

The remainder of the paper, considers a simple sales scenario comprising two data sourcesS1 and
S2, a reference modelRM, and a global schemaG. The schemata are shown in Fig. 2. All properties that
are key to a relation (or class) are shown in Fig. 2 using “♯” before their names.

The language LPS is used to define perspective schemata. A perspective schemadescribes a data
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model, part or whole (target schema), in terms of other data models (base schemata). Usually, a perspec-
tive schema is formed by the following components:

1. Nameis a schema name with the notation:PS|T, beingS the name of one or more base
schemata andT the name of the target schema. In Fig. 2, for instance,Ps′1|RM is a name
of a perspective schema whose base schema is S′

1 and the target schema isRM;
2. ’Require’ declarationsexpress the subset of the components of the target schema (classes,

relations, keys, and foreign keys) that will be necessary inthe perspective schema;
3. Matching Function signaturesindicate which matching functions must be implemented

to determine when two objects/tuples are distinct representations of the same object in
the real-world;

4. Correspondence Assertionsestablish the semantic correspondence between schemata’s
components.

The target schema may have much more information than is required to represent in a perspective
schema, namely when the target schema is the Reference Model. Hence, it is required to clearly indicate
which elements of the target schema are in the scope of the perspective schema. This is done in LPS using
‘require’ declarations. For instance, consider the perspective schemaPS2|RM between the schemataRM
(the target schema) andS2 (the base schema), both as presented in Fig. 2. For this perspective schema,
four relations fromRM are needed (PRODUCT, CUSTOMER, SALE, and SALE ITEM). The ’require’
declaration to relationCUSTOMER, for example, would be as follows:

require(CUSTOMER, {cidRM, cnameRM, cphoneRM})

Note that, for instance, the propertiescregion idRM andcaddressRM from RM.CUSTOMERare not
declared as being required.

3.1. Matching Functions

From a conceptual viewpoint, it is essential to provide a wayto identify instances of different
schemata that represent the same entity in the real-world. The proposal presented in [2] is to use match-
ing functions, which can include various techniques for matching instances, including some of those
used in data cleaning, such as lookup tables, user-defined functions, heuristics and past matching. These
functions, as occur in [7], define a 1:1 correspondence between the objects/tuples in families of cor-
responding classes/relations. In particular, the work shown in [2] is based on the following matching
function signature:

match : ((S1 [R1] , τ1) × (S2 [R2] , τ2)) → Boolean, (1)

beingSi schema names, Ri class/relation names, andτi the data type of the instances of Ri, for i ∈ {1,2}.
When both arguments are instanced,match verifies whether two instances are semantically equivalent
or not. If only one argument is instanced, e.g.S1.R1, then it obtains the semantically equivalentS2.R2

instance of the givenS1.R1 instance, returning true when it is possible, and false whennothing is found
or when there is more than one instance to match.

In some scenarios one-to-many correspondence between instances are common, e.g. when historical
data is stored in the DW. In this case, a variant ofmatch should be used, which has the following form:

match : ((S1 [R1] , τ1) × (S2 [R2 (predicate)] , τ2)) → Boolean. (2)
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predicate is a boolean condition that determines the context in which the instance matching must be
applied inS2.R2.

An example of a matching function signature involving schemata of Fig. 2 is presented in Fig. 3.
The implementation of the matching functions shall be externally provided, since their implementation
is very close to the application domain. However, in order tomake easer the implementation of a simple
prototype, a new variants ofmatch is introduced in LPS:

match :
((

S1 [R1] , τ1, {p′1 : τ ′1, ..., p
′
n : τ ′n}

)

×
(

S2 [R2] , τ2, {p′′1 : τ ′′1 , ..., p
′′
n : τ ′′n}

))

→ Boolean (3)

being thatp′i:τ ′i ∈ type(R1); andp′′i :τ ′′i ∈ type(R2), 1 ≤ i ≤ n.1 This variant of the matching function
is automatically generated by the system and indicates thatthe matching is done by simple attribute
comparison, i.e. each propertyp′i of R1 will be compared with the propertyp′′i of R2, for 1≤ i ≤ n.

match:((RM[CUSTOMER],τ1)×(G[CUSTOMER],τ2))→Boolean

Figure 3: Example of a matching function signature.

3.2. Correspondence Assertions

The semantic correspondence between schemata’s components is declared in the proposal presented
in [2] through the Correspondence Assertions (CAs), which are used to formally assert the correspon-
dence between schema components in a declarative fashion. CAs are classified in four groups: Property
Correspondence Assertion (PCA), Extension Correspondence Assertion (ECA), Summation Correspondence
Assertion (SCA), and Aggregation Correspondence Assertion (ACA). Examples of CAs are shown in
Fig. 4 and explained in this Section.

Property Correspondence Assertions (PCAs)
ψ1: PRM|G [CUSTOMER] • idcardG → numberTOtext(RM [CUSTOMER] • cidRM)

ψ2: PRM|G [CUSTOMER] • contactG → RM [CUSTOMER] • cphoneRM
Extension Correspondence Assertions (ECAs)
ψ3: PRM|G [CUSTOMER] → RM [CUSTOMER]

ψ4: Sv [CUSTOMER] → S1 [CUSTOMER] ⊐⊲⊳⊏ S2 [CUSTOMER]
Summation Correspondence Assertion (SCA)
ψ5: PS3|RM [PRODUCT] (pidRM)→normalise(S3 [PRODUCT SALES] (product numberS3))

Figure 4: Examples of correspondence assertion.

Property CAs relate properties of a target schema to the properties of base schemata. They allow
dealing with several kinds of semantic heterogeneity such as: naming conflict(for instance synonyms
and homonyms properties),data representation conflict(that occur when similar contents are represented
by different data types), andencoding conflict(that occur when similar contents are represented by
different formats of data or unit of measures). For example,the PCAsψ1 andψ2 (see Fig. 4) deal
with, respectively,data representation conflictandnaming conflict. ψ1 links the propertyidcardG to

1type() is a function defined in language LS that returns the structural type of a relation/class.
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the propertycidRM using the functionnumberTOtext to convert the data type fromnumberto text. ψ2

assignscontactG to cphoneRM .

The Extension CAs are used to describe which objects/tuplesof a base schema should have a
corresponding semantically equivalent object/tuple in the target schema. For instance, the relation
G.CUSTOMER is linked to relationRM.CUSTOMER through the ECAψ3 presented in Fig. 4.ψ3 de-
termines thatG.CUSTOMERandRM.CUSTOMERare equivalent, i.e., for each tuple ofCUSTOMERof the
schemaRM there is one semantically equivalent tuple inCUSTOMERof the schemaG, and vice-versa.

There are five different kinds of ECAs: equivalence, selection, difference, union, and intersection,
being the ECA of union similar to thenatural outer-joinof the usual relational models. For instance,
consider the view schema Sv with the relationCUSTOMER, which is related to the relationCUSTOMER

of the schema S1 and to the relation with the same name of S2 through the ECAψ4 shown in Fig. 4.ψ4

determines thatCUSTOMER in Sv is the union/join ofCUSTOMER in S1 andCUSTOMER in S2, i.e., for
each tuple ofCUSTOMERof the schema S1 there is one semantically equivalent tuple inCUSTOMERof
the schema Sv, or for each tuple ofCUSTOMER of the schema S2 there is one semantically equivalent
tuple in CUSTOMERof the schema Sv, and vice-versa. In an ECA, any relation/class can appear with a
selection condition, which determines the subset of instances of the class/relation being considered. This
kind of ECA is especially important to the DW because throughit the current instances of the DW can
be selected and related to the instances of their sources (which usually do not have historical data).

The Summation CAs are used to describe the summary of a class/relation whose instances are re-
lated to the instances of another class/relation by breaking them into logical groups that belong together.
They are used to indicate that the relationship between classes/relations involve some type of aggre-
gate functions (called SCA of groupby) or a normalisation process (called SCA of normalisation)2. For
example, consider the source schemaS3 (not presented in any figure), which contains a denormalised
relationPRODUCT SALES(product numberS3, productS3, quantityS3, priceS3, purchaseorderS3) and
the schemaRM presented in Fig. 2.PRODUCT SALES holds information about sold items in a purchase
order as well as information logically related to products themselves, which could be in another rela-
tion, occurring in schemaRM. The SCAψ5, displayed in Fig. 4, determines the relationship between
PRODUCT SALES andRM.PRODUCT when a normalisation process is involved, i.e., it determines that
RM.PRODUCT is a normalisation ofS3.PRODUCT SALES based on distinct values of propertyprod-
uct numberS3.

The Aggregation CAs link properties of the target schema to the properties of the base schema when
a SCA is used. ACAs associated to SCAs of groupby contains aggregation functions supported by most
of the queries languages, like SQL-99 [8], i.e.summation, maximum, minimum, averageand count.
The ACAs, similar to the PCAs, allow for the description of several kinds of situations; therefore, the
aggregate expressions can be more detailed than simple property references. Calculations performed can
include, for example, ordinary functions (such as sum or concatenate two or more properties’ values
before applying the aggregate function), and Boolean conditions (e.g. count all male students whose
grades are greater or equal to 10).

2This research also deal with denormalisations, which is defined usingpath expressions(component of the

language LS).
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4. Inference Mechanism

This proposal provides an inference mechanism to automatically infer a new perspective schema (see
Fig. 5(c)), given:

1. a set oforigin schemata and their associated perspective schemata, whichtake theorigin
schemata asbaseand the reference model astarget (see Fig. 5(a));

2. a destinationschema and its associated perspective schema, which take the reference
model asbaseand thedestinationschema astarget (see Fig. 5(b)).

In context of the Fig. 1, the perspective schemaPs′1,s′2,...,s′n|G can be inferred taking asorigin
the schemataS1,...,Sn as well as the perspective schemataPs′1|RM ,..., Ps′n|RM , and asdestinationthe
schemaG as well as the perspective schemaPRM |G.

The inferred perspective schema will have asbasea subset oforigin schemata, and astarget the
destinationschema. Its’require’ declarationswill be the same’require’ declarationspresent in the
perspective schema associated to thedestinationschema. TheMF signaturesandCAsof the inferred
perspective schema will be automatically generated using arule-based rewritten system.

Figure 5: Sketch of the inference mechanism.

The rule-based rewriting system is formed by a set of rules having the general form:

Rule:
X ⇒ Y

Z
( readX is rewritten inY if Z is valid ) , (4)

In (4), Rule is the name of the rule.X andY can be formed by any of the following expressions: a CA
pattern expression, a MF pattern signature, or a component pattern expression. CA pattern expressions
and MF pattern signatures are expressions conforming to theLPS syntax to declare, respectively, CAs
and MF signatures, being that some of their elements are variables to be used in a unification process.
Component pattern expressions are expressions conformingto the LS or the LPS syntaxes to represent
properties, path expressions, functions with n-ary arguments, values, or conditions of selection (predi-
cates), being that some of their elements are variables to beused in a unification process.Z is a condition
formed by a set of CA pattern expressions, or expressions of the forms: a)A ⇒ B such thatA andB are
component pattern expressions; b) (FK,C, ,C′, ) such thatFK is a foreign key name of a class/relation
C that refers to a class/relation C′; c) p:♮C ∈ type(C′), such thatp is a property name declared in a
class/relation C′ that refers to a class C.3 CA pattern expressions, MF pattern signatures, and component
pattern expressions are formally defined in the following text.

3type() is a function defined in language LS that returns the structural type of a relation/class.
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Definition 1 (CA pattern expression) Let̂A be a set of correspondence assertions defined in language
LPS. A CA pattern expression is an expression having the generalform:

K → L

with K and L being variables that can be instatiated with, respectively, the left-side and the right-side of
a correspondence assertion̂ψ ∈ Â.

Definition 2 (MF pattern signature) LetT a set of data types and̂L a set of schemata. A MF pattern
signature is an expression having one of the following forms:

match :
((

S1

[

C1

]

, τ1
)

×
(

S2

[

C2

]

, τ2
))

→ Boolean;

match :
(

(

S1

[

C1

]

, τ1
)

×
(

S2

[

C2

(

pred
)]

, τ2
))

→ Boolean;

match :
((

S1

[

C1

]

, τ1, {p′1 : τ ′1, . . . , p
′
n : τ ′n}

)

×
(

S2

[

C2

]

, τ2, {p′′1 : τ ′′1, . . . , p
′′
n : τ ′′n}

))

→ Boolean;

match :
((

S1

[

C1

]

, τ1, {p′1 : τ ′1, . . . , p′n : τ ′n}
)

×
(

S2

[

C2

(

pred
)]

, τ2, {p′′1 : τ ′′1 , . . . , p
′′
n : τ ′′n}

))

→

→ Boolean

WithS1 andS2 being variables that can be instatiated with any of the schemata belonging toL̂; C1 and
C2 being variables that can be instantiated with any class/relation of the schemata belonging tôL; pred
being a variable that can be instantiated with a predicate (as defined in LPS); p′i and p′′i , for 1 ≤ i ≤
n, are variables that can be instantiated with any property of a class/relation of the schemata belonging
to L̂; τ1, τ2, τ ′i, τ

′′
i , for 1 ≤ i ≤ n, are variable that can be instantiated with data types belonging to

T (defined in schemata belonging tôL).

Definition 3 (Component pattern expression) LetL̂ be a set of schemata. A Component pattern expres-
sion is a expression formed by a single variable that can be instantiated with a predicatepred; or is an
expression having one of the following forms:

S
[

C1

]

• p

S
[

C1

]

• ̺

ϕ
(

X1,X2, . . . ,Xn

)

S
[

C1

]

• p{p′′}

ℓ1 : C1 −⊲C2

With S being a variable that can be instatiated with any of the schemata belonging toL̂; C1 and C2

being variables that can be instantiated with any class/relation of the schemata belonging tôL; ̺ being
a variable that can be instantiated with a (value or reference) path expression as defined in LS; ℓ1 being
a variable that can be instantiated with a link of a path expression; p and p′′ being variables that can
be instantiated with any property of a class/relation of theschemata belonging tôL, being thatp′′ is
part of the structural type ofp; ϕ being a variable that can be instatiated with any function with n≥ 1
arguments that returns a value; andXi, 1 ≤ i ≤ n, being variables that can be instantiated with other
component pattern expressions.
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A condition Z is valid when all of its expressions are valid: a) the CA pattern expression is valid if
there is a CA, which is declared in one of the perspective schemata associated to theorigin schemata or
thedestinationschema, that unifies with it; b) the expression of the formA ⇒ B, such thatA andB are
component pattern expressions, is valid if there is a rule which unifies with it and which is recursively
applied; c) the expression of the form (FK,C, ,C′, ) is valid if there is a foreign key declaration declared
as required in one of the perspective schemata associated totheorigin schemata that unifies with it; d)
the expression of the formp:♮C ∈ type(C′) is valid if there are both a class/relation and a property, both
declared as required in one of the perspective schemata associated to theorigin schemata, that unify with
them. A formal definition of a valid condition is as follows:

Definition 4 (Valid condition (in an inference rule)) Let̂Lp be a set of perspective schemata andÂi

a set of correspondence assertions declared in some perspective schema belonging tôLp. Let also
{X1,X2, ...,Xn} be a condition Z in an inference rule. Z is a valid condition iff for each Xi, 1≤ i ≤ n,
if:

• Xi is a CA pattern expression, then there is aψ̂ ∈ Âi that unifies with Xi;
• Xi is an expression the form A⇒ B, such that A and B are component pattern expres-

sions, then there is an inference rule that unifies with Xi whose condition is a valid
condition,

• Xi is an expression of the form (FK,C, ,C′, ) then there is a foreign key declaration, as
defined in LS, declared as required in some perspective schema belongingto L̂p that
unifies with Xi;

• Xi is an expression of formp:♮C ∈ type(C′), then there are both a class/relation and a
property, both declared as required in some perspective schema belonging tôLp, such
that p:♮C ∈ type(C′).

WhenX andY are CA pattern expressions, the rule are rewritten-rules that rewrite CAs in other CAs
(RR-CAs). WhenX andY are MF pattern expressions, the rule are rewritten-rules that rewrite MFs in
other MFs (RR-MFs). WhenX andY are component pattern expressions, the rule are substitution-rules
that rewrite components in other components (RR-Cs). The latter are used as an intermediary process by
the RR-CAs and RR-MFs.

An example of a RR-CA is as follows:

RR-CA1:
PRM |D

[

CD
]

→ RM
[

CRM
]

⇒ PS|D

[

CD
]

→ KS

PS|RM

[

CRM
]

→ KS
. (5)

In (5) all variables are indicated by an underline.D is thedestinationschema,RM is the reference
model schema, andS is a variable that will be instantiated with some of theorigin schemata. CD is a
variable that will be instantiated with a class/relation ofthe schemaD; mutatis mutandis to CRM . K is a
variable that will be instantiated with the right side of a CApattern expression of extension. The letter S
in KS means that all elements in that expression belong to schemaS. The value ofS andK will depend
on which CA, that is declared in the perspective schema associated to someorigin schemata, will unify
with the condition of the rule. The notation in (5) will be used through the paper to explain examples of
rules.

The ruleRR-CA1 rewrites an ECA of equivalence, which connects a class/relation CD of thedesti-
nationschema to a class/relation CRM of the reference model schema, into an ECA, which connect the
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class/relation CD to a class/relation CS of someorigin schema; when is provided an ECA that connect
the class/relation CRM to CS .

An example of a RR-MF is as follows:

RR-MF1:

match :
((

RM
[

CRM
]

, τRM
)

×
(

D
[

CD
]

, τD
))

→ Boolean⇒

match :
((

S
[

CS
]

, τS
)

×
(

D
[

CD
]

, τD
))

→ Boolean

PS|RM

[

CRM
]

→ S
[

CS
] . (6)

In (6) τ is a data type. The ruleRR-MF1 rewrites a match function signature, which matches a
class/relation CRM of the reference model schema to a class/relation CD of thedestinationschema, in
a match function signature that matches a class/relation CS of someorigin schema to the class/relation
CD, when is provided an ECA of equivalence that connects the class/relation CRM to CS .

An example of RR-C is as follows:

RR-C1:
RM

[

CRM
]

• pRM ⇒ AS

PS|RM

[

CRM
]

• pRM → AS
. (7)

In (7) pRM is a variable that will be instantiated with a property of a class/relation andA is a variable
that will be instantiated with a component pattern expression. Similar toKS in (5), the letter S inAS

means that all elements into that expression belong to schema S. The value ofS andA will depend on
which CA declared in the perspective schema associated to some origin schemata will unify with the
condition of the rule.

The ruleRR-C1 rewrites a propertypRM of a class/relation of the reference model schema in a
property, a path expression, or a function of someorigin schema, when is provided an PCA that connects
the propertypRM to this property, path expression, or function. The whole set of proposed rules can be
found in appendix A.

1: procedure INFER CAS(AG → ARM,CAs)
2: repeat
3: find AG → ASi applying the inference rule R:

4: R:A
G→ARM⇒AG→ASi

conditions ;

5: add AG → ASi to CAs;
6: until all rules for rewriting CAs have been tested
7: end procedure

Figure 6: The pseudo-code to the inference mechanism to generate new CAs.

A pseudo-code detailing as new CAs are deduced is shown in Fig. 6. In Fig. 6,G is thedestination
schema,RM a reference model schema, andSi, i ≥ 1, origin schemata. The algorithm tries to find, for
each CAAG → ARM assigning the global schema to the reference model schema, one or more CAsAG

→ ASi as a result of applying toAG → ARM some rule for rewriting CAs. Notice that, in the condition
of the rule can exists expressions of the formA ⇒ B. In this case, the recursivity will be present. For
instance, a new ECA:
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PS1|G [CUSTOMER] → S1 [CUSTOMER]

can be created based onψ3 (see Fig. 4), using the ruleRR-CA1 since that the CAψ6 is defined in
perspective schemaPS1|RM (as shown in Fig. 7).

Extension Correspondence Assertion (ECA)
ψ6: PS1|RM [CUSTOMER] → S1 [CUSTOMER]

ψ7: PS2|RM [CUSTOMER] → S2 [CUSTOMER]

Figure 7: More examples of correspondence assertions.

A pseudo-code detailing as new MF signatures are deduced is shown in Fig. 8. In Fig. 8K andL are
pairs (classes/relations, data type) of the reference model schema or of thedestinationschema, whileK ′

andL ′ are pairs (classes/relations, data type) of someorigin schemata or of thedestinationone. For each
MF M that is declared in the perspective schema associated to thedestinationschema, the algorithm tries
to find one or more MFs as a result of applying toM some rule for rewriting MFs. For instance, two new
MF signatures:

match((S1[CUSTOMER],τ1)×(G[CUSTOMER],τ2))→Boolean
match((S2[CUSTOMER],τ1)×(G[CUSTOMER],τ2))→Boolean

can be created based on MF signature presented in Fig. 3, using the ruleRR-MF1 twice, since as the
CAs ψ6 andψ7 are defined, respectively, in perspective schemataPS1|RM andPS2|RM (as shown in
Fig. 7).

1: procedure INFER MFS(match(K×L )→Boolean ,MFs)
2: repeat
3: find match(K’×L’)→Boolean applying the inference rule R:

4: R:match(K×L)→Boolean⇒match(K’×L’)→Boolean
conditions ;

5: add match(K’×L’)→Boolean toMFs;
6: until all rules for rewriting MFs have been tested
7: end procedure

Figure 8: The pseudo-code to the inference mechanism to generate new MFs.

A pseudo-code with the iteration of the process to generate anew perspective is shown in Fig. 9.
In Fig. 9 PT is a perspective schema from the reference model to the global schema;Pj , 1 6= j 6= n,
are perspective schemata from source schemata to the reference model; andPI is the inferred perspec-
tive schema from source schemata to the global schema. All elements of the perspective schemata are
grouped in lists:classList, relationList, keyList, caList, andmfList. The three first lists hold
’require’ declarations of, respectively, classes, relations, and keys and foreign keys.caList contains
correspondence assertion declarations, andmfList has match function signatures.

This mechanism has been developed as part of a proof-of-concept prototype using a Prolog language.
Beside the inference mechanism module, the prototype consist of more five modules, such as theschema
manager, and theISCO translator. Theschema managermodule is employed by the designer to manage
the schemata (in language LS) as well as the perspective schemata (in language LPS). TheISCO trans-
lator performs the mapping between schemata written in LS or LPS languages to schemata defined in a
language programming called Information Systems COnstruction language (ISCO) [9]. ISCO is based
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1: procedure GENERATENEWPERSPECTIVE(PT , P1, ..., Pn, PI )
2: for each CA AG → ARM in PT .caList do
3: infer CAs(AG → ARM,{AG → ASi});
4: add CAs AG → ASi to PI .caList;
5: end for
6: for eachMF m in PT .mfList do
7: infer MFs(m,{m’i});
8: addMFs m’i to PI .mfList
9: end for

10: for each E in classList/relationList/keyList do
11: create a require declaration to PI ;
12: add it, appropriately, to PI .classList/
13: PI .relationList/PI .keyList
14: end for
15: end procedure

Figure 9: The pseudo-code to the creation of inferred perspective schemata.

on a contextual constraint logic programming that allows the construction of information systems. It can
define (object) relational schemata, represent data, and transparently access data from various heteroge-
neous sources in a uniform way, like a mediator system [10]. Thus, it is possible to access data from
information sources using the perspective schema in ISCO. Furthermore, once the perspective schema
from source schemata to the global schema has been inferred,as well as the new match functions have
been implemented, it can be translated to ISCO language and so the data of the global schema can be
queried.

5. Related work

The database community has been for many years engaged with the problem of data integration.
Researches on this area have developed in several importantdirections: schema matching, data quality,
to cite a few (see [11] for a survey), which can cover different architectures (e.g. FDBSs and DWs),
representation of data and involved data models (e.g. relational and non-structured). Recent research
in Federated Database Systems (FDBSs) has included: behaviour integration [12], integration of non-
traditional data (e.g biomedical [13, 14], intelligence data [15], and web source [16]), interactive inte-
gration of data [17, 18], and federated data warehouse systems [19]. All these approaches use a global
schema, but do not deal with a reference model schema. Similarly the authors’ research of the current
paper, [16] uses correspondence assertions (in this case, for specifying the semantics of XML-based
mediators). However, their CAs only deal with part of the semantic correspondence managed here. Fur-
thermore, they assume that there is a universal key to determine when two distinct objects are the same
entity in the real-world, which is a supposition often unreal.

Researches in Data Warehouses (DWs) have focused on technical aspects such as multidimensional
data models (e.g. [20, 21, 22, 23, 24, 25]) as well as the materialised view definition and maintenance
(e.g. [26]). In particular, the most conceptual multidimensional models are extensions to the Entity-
Relationship model (e.g. [27, 28, 29, 30]) or extensions to UML (e.g. [31, 32, 33]).

Reference in [34] focuses on an ontology-based approach to determine the mapping between at-
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tributes from the source schemata and the DW schema, as well as to identify the transformations required
for correctly moving data from source information to the DW.Their ontology, based on a common vo-
cabulary as well as a set of data annotations (both provided by the designer), allows formal and explicit
description of the semantic of the sources and the DW schemata. However, their strategy requires a
deep knowledge of all schemata involved in the DW system, in what is usually not an usual task. In the
proposed research of the present paper, it is dispensable, since each schema (source or DW) needs to
be related only to the reference model one. Additionally, in[34] there is nothing about the matching of
instances.

The approach closest to authors’ research is described in [35]. Similar to this study, their proposal
includes a reference model (cited as “enterprise model”) designed using an Enriched Entity-Relationship
(EER) model. However, unlike the authors’ research, all their schemata, including the DW schema, are
formed by relational structures, which are defined as views over the reference model. Their proposal pro-
vides the user with various levels of abstraction: conceptual, logical, and physical. In their conceptual
level, they introduce the notion of intermodel assertions that precisely capture the structure of an EER
schema or allow for the specifying of the relationship between diverse schemata. However, any transfor-
mation (e.g. restructuring of schema and values) or mappingof instances is deferred for the logical level,
unlike the current work. In addition, they did not deal with complex data, integrity constraints, and path
expressions, as this research does.

6. Conclusions and future works

In this paper, the authors have presented a proposal to automatically connect a global schema to its
sources by using an inference mechanism taking into accounta reference model. In proposed approach
the relationship between the global schema and the source schemata is made explicitly and declaratively
through correspondence assertions. This approach is particularly useful in data integration systems that
define a common or canonical schema, such as in Data Warehouse(DW) systems and in Federated
Database (FDB) systems. An advantage of the proposed approach is that by using the reference model
the designer user does not need to have a deep knowledge of allschemata involved in the DW system or in
the federation system, since that each schema (source or global) needs to be related only to the reference
model one. Thus, the designer user can describe the global system without concerns about where the
sources are or how they are stored. Besides, the process of data integration can be incrementally done in
two sense:

1. View schemata can be created as an intermediary process torelate portions of data that
have been integrated (those view schemata, in turn, are related to the reference model).
Thus the data integration process can be divided in small parts, instead of being seen as
a whole, turning the integration task easiest.

2. New source schemata can be added or actual source schematacan eventually change.
It is completely transparent to the DW systems or FDB systemssince the relationship
between the global schema and its source schemata is automatically created by the in-
ference mechanism.

A prototype Prolog-based has been developed to allow the description of schemata and perspective
schemata in the proposed language as well as to infer new perspective schemata based on other ones.
The matching functions can be implemented using Prolog itself or external functions. In addition, the
prototype include translators from the proposed language to the ISCO one. ISCO [9] allows access to
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heterogeneous data sources and to perform arbitrary computations. Thus, user-queries can be done, in a
transparent way, to access the information sources, like occurs in mediator systems [10].

For future work, investigations will be made into how the perspective schemata can be used to auto-
mate the materialisation of the data in the DWs or in other repository of a data integration environment.
Another important direction for future work is the development of a graphical user-friend interface to
declare the schemata in the proposed language, and thus, to hide some syntax details.
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[5] Valéria Magalhães Pequeno and João Carlos Gomes Moura Pires, “A formal object-relational data
warehouse model”, Tech. Rep., Universidade Nova de Lisboa,November 2007.
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[21] E. Malinowski and E. Zimányi, “A conceptual model for temporal data warehouses and its transfor-
mation to the ER and the object-relational models”,Data knowl. eng., vol. 64, no. 1, pp. 101–133,
2008.
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APPENDIX

A. Inference Rules

Hereafter, condider the following notation:

• L is a set of schema names.
• Lp is a set of perspective schema names.
• L̂p is a set of perspective schemata.
• W is a set of typed values.
• T is a set of data types.
• D is thedestinationschema,RM is the reference model schema, andS is a variable that

can be instantiated with any of theorigin schemata.
• CD is a variable that can be instantiated with any class/relation of the schemaD; mutatis

mutandis to CRM and CS .
• PRM |D ∈ Lp is a perspective schema name, withRM being thebaseschema andD the

targetschema, mutatis mutandis to PS|D and PS|RM .
• All variables are indicated by an underline.

A.1. Substituition-rules

The following notation will be used in this Section and through the paper to explain rules:

• A is a variable that can be instantiated with a component pattern expression, being that
the letter S inAS means that all elements into that expression belong to schema S,
mutatis mutandis toARM .

• pRM is a variable that can be instantiated with any property of a class/relation of the
schemaRM, mutatis mutandis topS .

• ̺ is a variable that can be instantiated with a (value or reference) path expression as
defined in LS , being that the letter S in̺S means that all elements into this expression
belong to schemaS, mutatis mutandis to̺RM .

• ℓi are variables that can be instantiated with a links of a path expression, being that the
letter S inℓSi means that this element belong to schemaS, mutatis mutandis toℓRM

i .
• pred is a predicate as defined in LPS, beingop operands inpred such thatop ∈ {<

,>,≤,≥, ♯,=} andB is an expression inpred such thatB = A or B = w, with w ∈ W.
The letter S inpredS andBS means that all elements into those expressions belong to
schemaS, mutatis mutandis topredRM andBRM .

• ϕ is a variable that can be instatiated with any function with n≥ 1 arguments that returns
a value.

• FK is a foreign key name.
• The expressionp: ♮C means that the type of the propertyp is a reference to the class C.
• type() is a function defined in language LS that returns the structural type of a rela-

tion/class.

The substituition-rules are formed by 12 rules as follows:
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RR-C1 :
RM

[

CRM
]

• pRM ⇒ AS

PS|RM

[

CRM
]

• pRM → AS

RR-C2 :
RM

[

CRM
]

• ̺RM ⇒ S[Cs] • ̺S

ℓRM
i+1 ⇒ ℓSi+1, for 0 ≤ i ≤ n− 1,

PS|RM

[

CRM
n

]

• pRM → S
[

CS
n

]

• pS

RR-C3 :
RM

[

CRM
]

• ̺RM ⇒ S [Cs] • ̺S

ℓRM
i+1 ⇒ ℓSi+1, for 0 ≤ i ≤ n− 1

RR-C4 :
ϕ

(

ARM
1 ,ARM

2 , . . . ,ARM
n

)

⇒ ϕ
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

ARM
i ⇒ AS

i , for 1 ≤ i ≤ n

RR-C5 :
RM

[

CRM
]

• pRM{pi} ⇒ AS
i , for 1 ≤ i ≤ n

PS|RM

[

CRM
]

• pRM{p1, p2, ..., pn} →
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

RR-C6 : w ⇒ w

RR-C7 :
ARM op BRM ⇒ AS op BS

ARM ⇒ AS ,

BRM ⇒ BS

RR-C8 :
ARM op BRM andpredRM ⇒ AS op BS andpredS

ARM ⇒ AS,

BRM ⇒ BS,

predRM ⇒ predS

RR-C9 :
ARM op BRM or predRM ⇒ AS op BS or predS

ARM ⇒ AS ,

BRM ⇒ BS ,

predRM ⇒ predS

RR-C10 :
pRM : CRM −⊲CRM

1 ⇒ pS : CS −⊲CS
1

PS|RM

[

CRM
]

• pRM → S
[

CS
]

• pS,

pS : ♮CS
1 ∈ type(CS)
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RR-C11 :
ℓRM : CRM −⊲CRM

1 ⇒ FKS : CS −⊲CS
1

PS|RM

[

CRM
]

→ S
[

CS
]

,

(FKS ,CS , ,CS
1 , )

RR-C12 :
FKRM : CRM −⊲CRM

1 ⇒ pS : CS −⊲CS
1

PS|RM

[

CRM
]

→ S
[

CS
]

,

PS|RM

[

CRM
1

]

→ S
[

CS
1

]

,

pS : ♮CS
1 ∈ type(CS)

A.2. rewritten-rules to rewrite CAs

The rules to rewrite CAs are subdivided in four groups in accordance to kind of CA involved. Thus,
there are rules for rewriting PCAs, ECAs, SCAs and ACAs, which are presented in following text.

A.2.1. rewritten-rules to rewrite PCAs

Consider the following notation to describe the RR-PCAs:

• GS is a variable that can be instantied with the right side of a CApattern expression of
property consisting of one of two forms: (AS

1 , AS
2 , . . . , AS

n) or (BS
1 ,predS

1 ), (BS
2 ,predS

2 ),
. . . , (BS

n−1,predS
n−1), BS

n .

The RR-PCAs are formed by five rules as follows:

RR-PCA1 :
PRM |D

[

CD
]

• pD → ARM ⇒ PS|D

[

CD
]

• pD → AS

ARM ⇒ AS

RR-PCA2 :
PRM |D

[

CD
]

• pD → RM
[

CRM
]

• pRM ⇒ PS|D

[

CD
]

• pD → GS

PS|RM

[

CRM
]

• pRM → GS

RR-PCA3 :

PRM |D

[

CD
]

• pD{p1, p2, ..., pn} →
(

ARM
1 ,ARM

2 , . . . ,ARM
n

)

⇒

PS|D

[

CD
]

• pD{p1, p2, ..., pn} →
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

ARM
i ⇒ AS

i , for 1 ≤ i ≤ n

RR-PCA4 :
PRM |D

[

CD
]

• pD →
(

ARM
1 ,ARM

2 , . . . ,ARM
n

)

⇒ PS|D

[

CD
]

• pD →
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

ARM
i ⇒ AS

i , for 1 ≤ i ≤ n
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RR-PCA5 :

PRM |D

[

CD
]

•pD→
(

BRM
1 ,predRM

1

)

;
(

BRM
2 ,predRM

2

)

; ...;
(

BRM
n−1,predRM

n−1

)

;BRM
n ⇒

PS|D

[

CD
]

• pD →
(

BS
1 ,predS

1

)

;
(

BS
2 ,predS

2

)

; ...;
(

BS
n−1,predS

n−1

)

;BS
n

BRM
i ⇒ BS

i ,predRM
i ⇒ predS

i , for 1 ≤ i ≤ n

A.2.2. rewritten-rules to rewrite ECAs

Consider the following notation to describe the RR-ECAs:

• K is a variable that can be instantiated with the right side of aCA pattern expression of
extension, being that the letter S inKS means that all elements in that expression belong
to schemaS.

• ⋄ is any operand appearing in a ECA, i.e.−,∩, or ⊲⊳ .
• Ci, for 1≤ i ≤ n, are class/relation names in some schema belonging toL̂.

The RR-ECAs are formed by four rules as follows:

RR-ECA1 :
PRM |D

[

CD
]

→ RM
[

CRM
]

⇒ PS|D

[

CD
]

→ KS

PS|RM

[

CRM
]

→ KS

RR-ECA2 :
PRM |D

[

CD
]

→ RM
[

CRM
(

predRM
)]

⇒ PS|D

[

CD
]

→ S
[

CS
(

predS
)]

PS|RM

[

CRM
]

→ S
[

CS
]

,

predRM ⇒ predS

RR-ECA3 :

PRM |D

[

CD
]

→ RM
[

CRM
(

predRM
)]

⇒

PS|D

[

CD
]

→ S
[

CS
1

(

predS
1

)]

⋄ S
[

CS
2

(

predS
2

)]

⋄ . . . ⋄ S
[

CS
n

(

predS
n

)]

PS|RM

[

CRM
]

→ S
[

CS
1

]

⋄ S
[

CS
2

]

⋄ . . . ⋄ S
[

CS
n

]

,

predRM ⇒ predS
i , for 1 ≤ i ≤ n

RR-ECA4 :

PRM |D

[

CD
]

→ RM
[

CRM
1

]

⋄ . . . ⋄ RM
[

CRM
j

(

predRM
j

)]

⋄ . . . ⋄ RM
[

CRM
n

]

⇒

PS|D

[

CD
]

→ KS
1 ⋄ KS

2 ⋄ . . . ⋄ CS
j (predS

j )⋄ . . . ⋄ KS
n

PS|RM

[

CRM
i

]

→ KS
i , for 1 ≤ i ≤ j − 1, j + 1 ≤ i ≤ n,

PS|RM

[

CRM
j

]

→ CS
j ,predRM

j ⇒ predS
j

A.2.3. rewritten-rules to rewrite SCAs

Consider the following notation to describe the RR-SCAs:

• X is a variable that can be instantiated with a propertyp or a path expression̺ or a
propertyp′ into another propertyp (a structured type) (notation:p{p′}).
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• Q is a variable that can be instantiated with the right side of aCA pattern expression
of summation, being that the letter S inQS means that all elements in that expression
belong to schemaS.

• ϑ is a variable that can be instantiated with the keywordsgroupbyor normalize, the two
possible kinds of SCA.

• pi, for 1 ≤ i ≤ n, are property names belonging to classes/relations in some schema
belonging toL̂.

The RR-SCAs are formed by four rules as follows:

RR-SCA1 :

PRM |D

[

CD
](

pD
1 , . . . , p

D
n

)

→ϑ(RM
[

CRM
]

(XRM
1 ,. . . , ϕ(ARM

1 , . . . ,ARM
n ), . . . ,XRM

n ))⇒

PS|D

[

CD
] (

pD
1 , . . . , p

D
n

)

→ ϑ(S
[

CS
]

(XS
1 , . . . , ϕ(AS

1 , . . . ,A
S
n), . . . ,XS

n))

PS|RM

[

CRM
]

→ S
[

CS
]

,

RM
[

CRM
]

• XRM
i ⇒ S

[

CS
]

• XS
i , for 1 ≤ i ≤ n,

ϕ(ARM
1 , . . . ,ARM

n )⇒ ϕ(AS
1 , . . . ,A

S
n)

RR-SCA2 :

PRM |D

[

CD
](

pD
1 , . . . , p

D
n

)

→ϑ(RM
[

CRM
(

predRM
)]

(XRM
1 ,. . . , ϕ(ARM

1 ,. . . ,ARM
n ),. . . ,

. . . ,XRM
n )) ⇒

PS|D

[

CD
] (

pD
1 , . . . , p

D
n

)

→ ϑ(S
[

CS
(

predS
)]

(XS
1 , . . . , ϕ(AS

1 , . . . ,A
S
n), . . . ,XS

n))

PS|RM

[

CRM
]

→ S
[

CS
]

,

predRM ⇒ predS ,

RM
[

CRM
]

• XRM
i ⇒ S

[

CS
]

• XS
i , for 1 ≤ i ≤ n,

ϕ(ARM
1 , . . . ,ARM

n )⇒ ϕ(AS
1 , . . . ,A

S
n)

RR-SCA3 :
PRM |D

[

CD
]

→ RM
[

CRM
]

⇒ PS|D

[

CD
] (

pD
1 , . . . , p

S
n

)

→ QS

PS|RM

[

CRM
] (

pRM
1 , . . . , pRM

n

)

→ QS ,

PRM |D

[

CD
]

• pD
i → RM

[

CRM
]

• pRM
i , for 1 ≤ i ≤ n

RR-SCA4 :

PRM |D

[

CD
]

→ RM
[

CRM
(

predRM
)]

⇒

PS|D

[

CD
] (

pD
1 , . . . , p

D
n

)

→ ϑ
(

S
[

CS
(

predS
)] (

XS
1 , . . . , ϕ

(

AS
1 , . . . ,A

S
n

)

, . . . ,XS
n

))

PS|RM

[

CRM
] (

pRM
1 , . . . , pRM

n

)

→ ϑ(S
[

CS
]

(XS
1 , . . . , ϕ(AS

1 , . . . ,A
S
n), . . . ,XS

n))

predRM ⇒ predS ,

PRM |D

[

CD
]

• pD
i → RM

[

CRM
]

• pRM
i , for 1 ≤ i ≤ n

A.2.4. rewritten-rules to rewrite ACAs

Consider the notation used to define the rules RR-PCAs. Also consider the following notation:

• γ is a variable that can be instantiated with one of the aggregation functions (sum, count,
min, max, avg) used in SCAs.

Technical Report (draft),June 4, 2009



A.2 rewritten-rules to rewrite CAs 22

• scais a variable that can be instantiated with the name of the respective SCA asigned to
an ACA.

The RR-ACAs are formed by eight rules as follows (the first sixrules are to rewrite ACAs related to
SCA of normalisation, while the last two rules are to rewriteACAs related to SCA of group by):

RR-ACA1 :
PRM |D

[

CD
]

• pD → sca,ARM ⇒ PS|D

[

CD
]

• pD → sca,AS

ARM ⇒ AS

RR-ACA2 :
PRM |D

[

CD
]

• pD → sca, RM
[

CRM
]

• pRM ⇒ PS|D

[

CD
]

• pD → sca,GS

PS|RM

[

CRM
]

• pRM → GS

RR-ACA3 :

PRM |D

[

CD
]

• pD{p1, p2, . . . , pn} → sca,
(

ARM
1 ,ARM

2 , . . . ,ARM
n

)

⇒

PS|D

[

CD
]

• pD{p1, p2, . . . , pn} → sca,
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

ARM
i ⇒ AS

i , for 1 ≤ i ≤ n

RR-ACA4 :

PRM |D

[

CD
]

• pD → sca,
(

ARM
1 ,ARM

2 , . . . ,ARM
n

)

⇒

PS|D

[

CD
]

• pD → sca,
(

AS
1 ,A

S
2 , . . . ,A

S
n

)

ARM
i ⇒ AS

i , for 1 ≤ i ≤ n

RR-ACA5 :

PRM |D

[

CD
]

• pD → sca,
(

BRM
1 ,predRM

1

)

; . . . ;
(

BRM
n−1,predRM

n−1

)

;BRM
n ⇒

PS|D

[

CD
]

• pD → sca,
(

BS
1 ,predS

1

)

; . . . ;
(

BS
n−1,predS

n−1

)

;BS
n

BRM
i ⇒ BS

i ,

predRM
i ⇒ predS

i , for 1 ≤ i ≤ n

RR-ACA6 :
PRM |D

[

CD
]

• pD → RM
[

CRM
]

• pRM ⇒ PS|D

[

CD
]

• pD → sca,GS

PS|RM

[

CRM
]

• pRM → sca,GS

RR-ACA7 :
PRM |D

[

CD
]

• pD → sca, γ
(

ARM
)

⇒ PS|D

[

CD
]

• pD → sca, γ
(

AS
)

ARM ⇒ AS

RR-ACA8 :
PRM |D

[

CD
]

• pD → sca, γ
(

ARM ,predRM
)

⇒ PS|D

[

CD
]

• pD → sca, γ
(

AS ,predS
)

ARM ⇒ AS,

predRM ⇒ predS
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A.3. rewritten-rules to rewrite matching function signatures

Consider the following notation to describe the RR-MFs:

• Y is a variable that can be instantiated with a component pattern expression of forms:
S[CS ]•pS or ϕ(S[CS ]•pS ); being that the letter S inYS means that all elements into
that expression belong to schemaS.

• S1 andS2 are variables that can be instantiated with distinct schemanames belonging
to L.

• CD
i , for 1 ≤ i ≤ n, are variable that can be instantiated with any class/relation of the

schemaD; mutatis mutandis to CRM
i and CS

i .
• pRM

i , for 1 ≤ i ≤ n, are variables that can be instantiated with any property of a
class/relation of the schemaRM, mutatis mutandis topS

i andpD
i .

• τ andτ i are variable that can be instantiated with any data type belonging toT , being
that the letter S inτS (and τS

i ) means that the type was described in the schemaS,
mutatis mutandis toτRM , τRM

i , τD andτD
i .

• E is a variable that can be instantiated with a class/relationwith a selection condition
(notation: C(pred)) or without a selection condition (notation: C), being that the letter
D in ED means that all elements into that expression belong to schema D.

The RR-MFs are formed by seven rules defined as follows:

RR-MF1 :

match :
((

RM
[

CRM
]

, τRM
)

×
(

D
[

ED
]

, τD
))

→ Boolean⇒

match :
((

S
[

CS
]

, τS
)

×
(

D[ED], τD
))

→ Boolean

PS|RM

[

CRM
]

→ S
[

CS
]

,

τS = type(CS)

RR-MF2 :

match :
((

RM
[

CRM
1

]

, τRM
1

)

×
(

RM
[

CRM
2

]

, τRM
2

))

→ Boolean⇒

match :
((

S1

[

CS1
1

]

, τS1
1

)

×
(

S2[CS2
2 ], τS2

2

))

→ Boolean

PS1|RM

[

CRM
1

]

→ S1

[

CS1
1

]

,

PS2|RM

[

CRM
2

]

→ S2

[

CS2
2

]

,

τS1
1 = type(CS1

1 ),

τS2
2 = type(CS2

2 )

RR-MF3 :
match :

((

D
[

ED
1

]

, τD
1

)

×
(

D
[

ED
2

]

, τD
2

))

→ Boolean⇒

match :
((

D
[

ED
1

]

, τD
1

)

×
(

D
[

ED
2

]

, τD
2

))

→ Boolean
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RR-MF4 :

match :
((

RM
[

CRM
]

, τRM , {pRM
1 : τRM

1 , . . . , pRM
n : τRM

n }
)

×

×
(

D
[

ED
]

, τD, {pD
1 : τD

1 , . . . , p
D
n : τD

n }
))

→ Boolean⇒

match :
((

S
[

CS
]

, τS , {pS
1 : τS

1 , . . . , p
S
n : τS

n}
)

×

×
(

D[ED], τD, {pD
1 : τD

1 , . . . , p
D
n : τD

n }
))

→ Boolean

PS|RM

[

CRM
]

→ S
[

CS
]

,

τS = type(CS),

PS|RM

[

CRM
]

• pRM
i → YS

i for 1 ≤ i ≤ n,

pS
i : τS

i ∈ type(CS) for 1 ≤ i ≤ n

RR-MF5 :

match :
((

RM
[

CRM
1

]

, τRM
1 , {pRM

1 : τRM
1 , . . . , pRM

n : τRM
n }

)

×

×
(

RM
[

CRM
2

]

, τRM
2 , {pRM

21 : τRM
21 , . . . , pRM

2n : τRM
2n }

))

→ Boolean⇒

match :
((

S1

[

CS1
1

]

, τS1
1 , {pS1

1 : τS1
1 , . . . , pS1

n : τS1
n }

)

×

×
(

S2

[

CS2
2

]

, τS2
2 , {pS2

1 : τS2
1 , . . . , pS2

n : τS2
n }

))

→ Boolean

PS1|RM

[

CRM
1

]

→ S1

[

CS1
1

]

,

τS1
1 = type(CS1

1 ),

PS2|RM

[

CRM
2

]

→ S2

[

CS2
2

]

,

τS2
2 = type(CS2

2 ),

PS1|RM

[

CRM
1

]

• pRM
i → YS1

i for 1 ≤ i ≤ n,

PS2|RM

[

CRM
2

]

• pRM
2i → YS2

i for 1 ≤ i ≤ n,

pS1
i : τS1

i ∈ type(CS1
1 ) for 1 ≤ i ≤ n,

pS2
i : τS2

i ∈ type(CS2
2 ) for 1 ≤ i ≤ n

RR-MF6 :

match :
((

D
[

ED
1

]

, τD
1 , {pD

1 : τD
1 , . . . , p

D
n : τD

n }
)

×

×
(

D
[

ED
2

]

, τD
2 , {pD

21 : τD
21, . . . , p

D
2n : τD

2n}
))

→ Boolean⇒

match :
((

D
[

ED
1

]

, τD
1 , {pD

1 : τD
1 , . . . , p

D
n : τD

n }
)

×

×
(

D
[

ED
2

]

, τD
2 , {pD

21 : τD
21, . . . , p

D
2n : τD

2n}
))

→ Boolean

Technical Report (draft),June 4, 2009


