
On the Integration of Singleton Consistencies and
Look-Ahead Heuristics

Marco Correia and Pedro Barahona

Centro de Inteligência Arti�cial, Departamento de Informática,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

{mvc,pb}@di.fct.unl.pt

Abstract. The e�ciency of complete solvers depends both on constraint
propagation to narrow the domains and some form of complete search.
Whereas constraint propagators should achieve a good trade-o� between
their complexity and the pruning that is obtained, search heuristics take
decisions based on information about the state of the problem being
solved. In general, these two components are independent and are in-
deed considered separately. A recent family of algorithms have been pro-
posed to achieve a strong form of consistency called Singleton Consis-
tency (SC). These algorithms perform a limited amount of search and
propagation (lookahead) to remove inconsistent values from the variables
domains, making SC costly to maintain. This paper follows from the ob-
servation that search states being explored while enforcing SC are an
important source of information about the future search space which is
being ignored. In this paper we discuss the integration of this look-ahead
information into variable and value selection heuristics, and show that
signi�cant speedups are obtained in a number of standard benchmark
problems.

1 Introduction

Complete constraint programming solvers have their e�ciency dependent on two
complementary components, propagation and search. Constraint propagation is
a key component in constraint solving, eliminating values from the domains of
the variables with polynomial (local) algorithms. The other component, search,
aims at �nding solutions in the remaining search space, and is usually driven
by heuristics both for selecting the variable to enumerate and the value that is
chosen �rst.

Typically, these components are independent. In particular, heuristics take
into account some features of the remaining search space, and some structure of
the problem to take decisions. Clearly, the more information there is, the more
likely it is to get a good (informed) heuristics. Recently, a lot of attention has
been given to a class of algorithms which analyse look-ahead what-if scenarios:
what would happen if a variable x takes some value v? Such look-ahead analysis
(typically done by subsequently maintaining arc or generalised arc consistency on
the constraint network) may detect that value v is not part of any solution, and

eliminate it from the domain of variable x. This is the purpose of the di�erent
variants of Singleton Consistency (SC) [7,1,4,15].

In this paper we propose to go one step further of the above approaches. On
the one hand, by recognising that SC propagation is not very cost-e�ective in
general [17], we propose to restrict it to those variables more likely to be chosen
by the variable selection heuristics. More speci�cally, we assume that there are
often many variables that can be selected and for which no good criteria exists
to discriminate them. This is the case with the �rst-fail (FF) heuristics, where
often there are many variables with 2 values, all connected to the same number of
other variables (as is the case with complete graphs). Hence the information gain
obtained from SC propagation is used to break the ties between the pre-selected
variables.

On the other hand, we attempt to better exploit the information made avail-
able by the lookahead procedure, and use it not only to �lter values but also
to guide search. The idea of exploiting look-ahead information is not new. How-
ever in the context of Constraint Programming, look-ahead information has not
been fully integrated in subsequent variable and value selection heuristics (see
section 5).

In this paper we thus investigate the possibility of integrating Singleton Con-
sistency propagation procedures with look-ahead heuristics, both for variable
and value selection heuristics, and analyse the speedups obtained in a number
of benchmark problems.

The structure of the paper is the following. In the next section we review some
properties of constraint networks. In section 3 we discuss variants of Singleton
Consistency, and show how to adapt them to obtain look-ahead information. In
section 4 we present a number of benchmark problems and compare the results
obtained when using and not using the look-ahead heuristics. In section 5 we
report on related work, and �nally conclude with a summary of the lessons
learned and directions for further research.

2 Notation and background

A constraint network consists of a set of variables X , a set of domainsD, and a set
of constraints C. Every variable x ∈ X has an associated domain D(x) denoting
its possible values. Every k-ary constraint c ∈ C is de�ned over a set of k variables
(x1, . . . , xk) by the subset of the Cartesian product D(x1)×. . .×D(xk) which are
consistent values. The constraint satisfaction problem (CSP) consists in �nding
an assignment of values to variables such that all constraints are satis�ed.

A CSP is arc-consistent i� it has non-empty domains and every consistent
instantiation of a variable can be extended to a consistent instantiation involving
an additional variable [16]. A problem is generalized arc-consistent (GAC) i� for
every value in each variable of a constraint there exist compatible values for all
the other variables in the constraint.

Enforcing (generalized) arc consistency is usually not enough for solving a
CSP and search must be performed. A large class of search heuristics follow

Algorithm 1 sc(X ,C) : state

do
modified←false
forall x ∈ X

modified← sRevise(x,X ,C) ∨modified
if D(x) = ∅

state←failed
return

endif
endfor

while modified =true
state←succeed

the �rst-fail/best-promise policy (FF/BP) [12], which consists of selecting the
variable which more likely leads to a contradiction (FF), and then select the
value that has more chances of being part of a solution (BP). For estimating �rst-
failness, heuristics typically select the variable with smaller domain (dom), more
constraints attached (deg), more constraints to instantiated variables (bdeg), or
combinations (e.g. dom/deg). Best-promise is usually obtained by integrating
some knowledge about the structure of the problem.

3 Look-ahead pruning algorithms

3.1 Singleton consistencies

A CSP P is singleton θ-consistent (SC), i� it has non-empty domains and for
any value a ∈ dom (x) of every variable x ∈ X , the resulting subproblem P |x=a

can be made θ-consistent. Most cost-e�ective singleton consistencies are singleton
arc-consistency (SAC) [7] and singleton generalized arc-consistency (SGAC) [17].

To achieve SC in a CSP, procedure SC [7] instantiates each variable to each of
its possible values in order to prune those that (after some form of propagation)
lead to a domain wipe out (alg. 1). Once some (inconsistent) value is removed,
then there is a chance that a value in a previously revised variable has become
inconsistent, and therefore SC must check these variables again. This can happen
at most nd times, where n is the number of variables, and d the size of the largest
domain, hence SC time complexity is in O(n2d2Θ), Θ being the time complexity
of the algorithm that achieves θ-consistency on the constraint network. Variants
of this algorithm with the same pruning power but yielding distinct space-time
complexity trade-o�s have been proposed [1,3,4,15]. A related algorithm consid-
ers each variable only once (alg. 2), has better runtime complexity O(ndΘ), but
achieves a weaker consistency, called restricted singleton consistency (RSC) [17].

Note that both algorithms use function sRevise (alg. 3) which prunes the
domain of a single variable by trying all of its possible instantiations.

Algorithm 2 rsc(X ,C) : state

forall x ∈ X
sRevise(x,X ,C)
if D(x) = ∅

state←failed
return

endif
endfor
state←succeed

Algorithm 3 sRevise(x,X ,C) : modified

modified←false
forall a ∈ D(x)

try x = a
state←propagateθ(X ,C)

undo x = a
if state =failed

D(x)← D(x) \ a
modified←true

endif
endfor

3.2 Pruning decisions

Another possible trade-o� between run-time complexity and pruning power is
to enforce singleton consistency on a subset of variables S ⊂ X . We identi�ed
two possible goals which condition the selection of S : �ltering and decision
making. From a �ltering perspective, S should be the smallest subset where
(restricted) singleton consistency can actually prune values, and although this
is not known a priori, approximations are possible by exploring incrementality
and value support [1,4]. On the other hand, S may be selected for improving
the decision making process, in particular of variable selection heuristics that
are based on the cardinality of the current domains. In this case, the pruning
resulting from enforcing singleton consistency is used as a mechanism to break
ties both in the selection of variable and in the choice of the value to enumerate.

Observing the general preference for variable heuristics which select smallest
domains �rst, we propose de�ning S as the set of variables whose domain car-
dinality is below a given threshold d. We denote by rscd(X , C) and scd(X , C),
respectively, the algorithms rsc(X|D|≤d, C) and sc(X|D|≤d, C), where X|D|≤d is
the subset of variables in X having domains with cardinality less or equal to d.

A further step in integrating singleton consistencies with search heuristics is
to explore information regarding the subproblems that are generated each time
a value is tested for consistency. We propose a class of look-ahead heuristics
(LA) for any CSP P which reason over the size of its solution space, given
by a function σ (P), collected while enforcing singleton consistency. Although

Algorithm 4 sReviseInfo(x,X ,C,info) : modified

modified←false
forall a ∈ D(x)

try x = a
state←propagateθ(X ,C)
info[x, a]← collectInfo(X , C)

undo x = a
if state =failed

D(x)← D(x) \ a
modified←true

endif
endfor

Algorithm 5 search(X ,C) : state

info← ∅
if sc(X , C) =fail

state←fail
return

endif
if ∀x : |D(x)| = 1

state←succeed
return

endif
x← selectVariable(X , info)
a← selectValue(x, info)
state← search(X , C ∪ (x = a)) or search(X , C ∪ (x 6= a))

there is no known polynomial algorithm for computing σ (�nding the number of
solutions of a CSP is a #P-complete problem), there exists a number of naive
as well as more sophisticated approximation functions [10,13]. We conjecture
that by estimating the size of the solution space for each possible instantiation,
i.e. σ (P |x=a), there is an opportunity for making more informed decisions that
will exhibit both better �rst-failness and best-promise behaviour. Moreover, the
class of approximations of σ presented below are easy to compute, do not add
complexity to the cost of generating the subproblems, and only requires a slight
modi�cation of the sRevise algorithm.

The sReviseInfo algorithm (alg. 4) stores in a table (info) relevant infor-
mation to the speci�c subproblem being considered in each loop iteration. In
our case, info is an estimation of the subproblem solution space, more formally
info[x, a] = σ′ (P |x=a) where σ′ ≈ σ. The table is initialized before single-
ton consistency enforcement, computed after propagation, and handed to the
selectVariable and selectValue functions as shown in algorithm 5 . There
are several possible de�nitions for these functions associated with how they in-
tegrate the collected information. Regarding the selection of variable for a given
CSP P , we identi�ed two FF heuristics which are cheap and easy to compute:

var1 (P) = arg min
x∈X (P)

 ∑

a∈D(x)

σ′ (P |x=a)

var2 (P) = arg min
x∈X (P)

(
max

a∈D(x)
σ′ (P |x=a)

)

Informally, var1 gives preference for the variable with a smaller sum of the
number of solutions for every possible instantiation, while var2 selects the vari-
able whose instantiation with maximum number of solutions is the minimum
among all variables. For the selection of value for some variable x, a possible BP
heuristic is

val1 (P, x) = arg max
a∈D(x)

(σ′ (P |x=a))

which simply prefers the instantiation that prunes less solutions from the re-
maining search space.

Functions var1 and val1 correspond to the minimize promise variable heuris-
tic and maximize promise value heuristic de�ned in [9]. Please note that we do
not claim these are the best options for the estimation of the search space or the
number of solutions. We have simply adopted them for simplicity and for testing
the concept (more discussion on section 6).

4 Experimental results
A theoretical analysis on the adequacy of these heuristics as FF or BP candidates
is needed, but hard to accomplish. Alternatively, in this section we attempt to
give some empirical evidence of the quality of these heuristics by presenting the
results of using them combined with constraint propagation and backtracking
search (BT) on a set of typical CSP benchmarks.

The set of heuristics selected for comparison was chosen in order to provide
some insight on the adequacy of enforcing SC on a subset of variables as a good
trade-o� between propagation and search and on the impact of integrating LA
information in the variable and value selection heuristics. As a side e�ect, we
tried to con�rm previous results on the classes of instances where SC is cost
e�ective and on the performance of RSC regarding SC.

As a �rst attempt at measuring the potential of LA heuristics, a simple
measure was used for estimating the number of solutions in a given subproblem:

σ′ =
∑

x∈X
log2 (D(x))

which informally expresses that the number of solutions is correlated to the size
of the subproblem search space1. Although this is a very rough estimate, we
1 We use the logarithm since the size of search space can be a very large number.

are assuming that it could nevertheless provide valuable information to compare
alternatives (see section 6).

As a baseline for comparison we used the dom variable selection heuristic
(see section 2) without any kind of singleton consistency enforcing. The other
elements of the test set are the possible combinations of enforcing SC, RSC, SC2
or RSC2 with the dom or LA heuristics. The SC2 and RSC2 tests implement the
scd(X , C) and rscd(X , C) strategies with d = 2, the threshold for which most
interesting results were obtained. The LA heuristics implement the proposed
functions var1 and val1. Each combination is thus denoted by a+b+c, where a
states the type of singleton consistency enforced (or is absent if none), b speci�es
the variable heuristic and c the value heuristic. For example, sc+dom+min per-
forms singleton consistency and then instantiates the variable with the smallest
domain to the minimum value in its domain.

In the following experiments all times are given in seconds, and represent
the time needed for �nding the �rst solution. The column 'ratio', when present,
refers to the average CPU time of the current heuristic over the baseline, which
is always the CPU time of the dom heuristic. Data presented in the following
charts was interpolated using a Bézier smoothing curve.

Tests regarding sections 4.1 and 4.2 were performed on a Pentium4, 3.4GHz
with 1Gb RAM, while the results presented in section 4.3 were obtained on a
Pentium4, 1.7GHz with 512Mb RAM.

4.1 Graph Coloring

Graph coloring consists of trying to assign n colors to m nodes of a given graph
such that no pair of connected nodes have the same color. In this section we
evaluate the performance of the presented heuristics in two sets of 100 instances
of 10-colorable graphs, respectively with 50 and 55 nodes, generated using Joseph
Culberson's k-colorable graph generator [6].

A CSP for solving the graph coloring problem was modelled by using variables
to represent each node and values to de�ne its color. Di�erence binary constraints
were posted for every pair of connected nodes.

The average degree of a node in the graph d, i.e. the probability that each
node is connected to every other node, has been used for describing the phase
transition in graph coloring problems [5]. In this experiment we started by deter-
mining empirically the phase transition to be near d = 0.6, and then generated
100 random instances varying d uniformly in the range [0.5 . . . 0.7].

Figure 1 compares the search e�ort using each heuristic on the smallest graph
problem, with a timeout of 300 seconds. These results clearly divide the heuris-
tics into two sets, the set where SC and RSC was used being much better than
the other on the hard instances. Since the ranking within the best set was not
so clear, a second experiment on the larger and more di�cult problem was per-
formed using only these four heuristics, with a larger timeout of 900 seconds.
The results of these tests are shown graphically on �g. 2, and also given in detail
in table 1. This second set of experiments shows that RSC+LA is better on

 0.01

 0.1

 1

 10

 100

 1000

 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

C
P

U
 T

im
e

(lo
g

sc
al

e)

d

sc+la
rsc+la

sc2+dom+min
sc+dom+min

rsc2+dom+min
rsc+dom+min

rsc2+la
dom+min

sc2+la

Fig. 1. CPU time spent in �nding the �rst solution of random 10-colorable graph
instances with size 50 .

heuristic d

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700

rsc+dom+min 0.71 8.46 160.59 499.27 179.93 26.60 13.59 1.00
sc+dom+min 0.93 0.83 183.58 624.11 184.67 46.13 21.43 0.47

rsc+la 1.18 5.03 148.92 67.13 72.62 26.44 0.73 0.72
sc+la 0.46 104.29 320.35 603.55 107.27 69.51 0.36 0.37

Table 1. CPU time spent in �nding the �rst solution of random 10-colorable graph
instances with size 55. Columns show averages for intervals of uniform variation of
constraint tightness d.

 0.1

 1

 10

 100

 1000

 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

C
P

U
 T

im
es

 (
lo

g
sc

al
e)

d

rsc+dom+min
rsc+la

sc+dom+min
sc+la

Fig. 2. CPU time spent in �nding the �rst solution of random 10-colorable graph
instances with size 55.

the most di�cult instances (almost by an order of magnitude), while the others
have quite similar e�ciency.

4.2 Random CSPs
Randomly generated CSPs have been widely used experimentally, for instance
to compare di�erent solution algorithms. In this section we evaluate the look-
ahead heuristics on several random n-ary CSPs. These problems were generated
using model C [11] generalized to n-ary CSPs, that is, each instance is de�ned
by a 5-tuple 〈n, d, a, p1, p2〉, where n is the number of variables, d is the uniform
size of the domains, a is the uniform constraint arity, p1 is the density of the
constraint graph, and p2 the looseness of the constraints.

These tests evaluate the performance of the several heuristics in a set of ran-
dom instances near the phase transition. For this task we used the constrained-
ness measure κ [10] for the case where all constraints have the same looseness
and all domains have the same size:

κ =
− |C| log2 (p2)

n log2 d

where |C| is the number of n-ary constraints.
We started by �xing n, d and a arbitrarily to 50, 5 and 3 respectively, and

then computed 100 values for p2 uniformly in the range [0.1 . . . 0.8]. For each of
these values, a value of p1 was used such that κ = 0.95 (problems in the phase
transition have typically κ ≈ 1). The value of p1, given by

p1 = −κ
n log2 d

log2 p2
× a! (n− a)!

n!

is computed from the �rst formula and by noting that p1 is the fraction of
constraints over all possible constraints in the constraint graph, i.e.

p1 = |C| a! (n− a)!
n!

Solutions were stored as positive table constraints and GAC-Schema [2] was
used for �ltering. The timeout was set to 600 seconds.

Table 2 shows the results obtained. In �gure 3 the performances of the most
interesting heuristics are presented graphically. Besides the rsc+dom+min and

p2

heuristic 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8
dom+min 0.06 0.34 2.98 12.86 52.84 236.82 377.18

rsc2+dom+min 0.10 0.58 4.69 18.79 73.61 279.86 429.22
rsc+dom+min 0.21 1.09 5.35 25.03 97.32 319.71 471.83
sc2+dom+min 0.11 0.64 4.95 20.45 79.78 289.59 438.92
sc+dom+min 0.27 1.28 6.27 29.28 112.15 341.82 492.76

rsc2+la 0.09 0.45 3.47 11.85 53.64 237.19 373.80
rsc+la 0.11 0.37 1.43 3.28 21.86 71.10 99.93
sc2+la 0.10 0.50 3.78 12.92 58.60 249.03 388.77
sc+la 0.15 0.47 1.75 4.04 26.06 82.60 115.13

Table 2. CPU time spent in �nding the �rst solution of random CSP instances Columns
show averages for intervals of uniform variation of constraint looseness p2.

 0.01

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
P

U
 T

im
e

(lo
g

sc
al

e)

p2

sc+la
rsc+la

dom+min
rsc2+dom

rsc2+la

Fig. 3. CPU time spent in �nding the �rst solution of random CSP instances.

sc+dom+min heuristics which always performed worse than the others, there

seems to be a change of ranking around p2 ≈ 0.4, with the dom+min dominating
on the dense instances, and LA heuristics 3-4 times faster on the sparse zone.
RSC+LA and SC+LA are consistently close across all instances, being RSC
slightly better.

4.3 Partial Latin Squares
Latin squares is a well known benchmark which combines randomness and struc-
ture [19]. The problem consists in placing the elements 1 . . . N in a N ×N grid,
such that each element occurs exactly once on the same row or column. A partial
Latin squares (or quasigroup completion) problem is a Latin squares problem
with a number of preassigned cells, and the goal is to complete the puzzle.

The problem was modelled using the direct encoding, i.e. using an all-di�erent
(GAC) constraint for every row and column. The dual encoding model, as pro-
posed in [8], was also considered but never improved over the direct model on
the presented instances. The value selection heuristic used in conjunction with
the dom variable selection heuristic, denoted as mc (minimum-con�icts), selects
the value which occurs less in the same row and column of the variable to in-
stantiate. This is reported to be the best known value selection heuristic for this
problem [8].

We generated 200 instances of a satis�able partial Latin squares of size 30,
with 312 cells preassigned, using lsencode-v1.1 [14], a widely used random quasi-
group completion problem generator. The timeout was set to 900 seconds.

Results are presented on table 3. In this problem there is a clear evidence

#fails time
heuristic #timeouts avg std avg std ratio
dom+mc 5 18658 43583 66.7 169 1

rsc2+dom+mc 5 235 436 70.2 156.4 1.05
rsc+dom+mc 5 24 49 89.3 159.2 1.34
sc2+dom+mc 10 174 330 100.5 207.1 1.51
sc+dom+mc 6 15 28 122.8 180.3 1.84

rsc2+la 0 51 127 12.2 19.9 0.18
rsc+la 0 14 35 67.7 47.7 1.02
sc2+la 0 43 109 15.6 26.4 0.23
sc+la 4 11 29 104.6 134.4 1.57

Table 3. Running times and number of fails for the pls-30-312 problem. Last column
shows the ratio between the average time of each heuristic over the average time of the
baseline, which is the dom+mc heuristic.

of the rsc2+la and sc2+la heuristics compared to every other. Besides the fact
that they are over 5 times faster than the other alternatives, they are also the
most robust, as shown by their lower standard deviations as well as the absence
of time out instances.

4.4 Discussion

The results obtained clari�ed some of the questions posed in the beginning of
this section. In particular, the best performing combinations in all problems
were always obtained using LA information, so this approach has clearly some
potential to be explored more thoroughly.

Regarding the use of SC on a subset of variables, the results so far are not
conclusive. Heuristics that restrict SC maintenance to only 2 valued variables
performed badly both on the graph coloring and random problems, but clearly
outperformed all others on the Latin squares problem. We think that this be-
haviour may be connected with the number of times these heuristics have a
chance to break ties both in the selection of variable and value. The cardinal-
ity of the domains should have impact on the number of decisions having the
same preference for FF heuristics, in particular the dom heuristic. The average
number of values in the Latin squares problem is very low (around 3) since most
variables are instantiated, so these heuristics would have more chance to make a
di�erence here than on the other problems which have larger cardinality (5 and
10). The same argument may apply to the value selection heuristic if we note
that the selection of value is more important in problems with some structure,
which would again favour the Latin squares problem.

The remaining aspects of the results obtained are in accordance with the
extensive analysis of singleton consistencies described in [17]. On the question
of cost-e�ectiveness of RSC we obtained similar positive results, in fact it was
slightly better than SC on all instances. Its combination with LA was the most
successful, outperforming the others in the hard instances of every problem.

In the class of random problems, their work concludes that singleton con-
sistencies are only useful in the sparse instances. Our results also con�rm this.
Generally, the claim that SC can be very expensive to maintain seems true in
our experiments except when using combined with LA heuristics. This provides
some evidence that the good behaviour of SC+LA observed relies more strongly
on correct decisions rather than on the �ltering achieved.

5 Related work

The work of [18] suggests improving the variable selection heuristic based on
the impact each variable assignment had on past search states. The impact is
de�ned as the ratio of search size reduction achieved when propagating the as-
signment. In their paper the use of a speci�c look-ahead procedure for measuring
this impact is regarded as costly, and depreciated in favour of a method that
accumulates this information across distinct search branches and/or search iter-
ations (restarts). Their results show that the method eventually converges to a
good variable ordering (the value selection heuristic is not considered).

In [13], belief updating techniques are used to estimate the likelihood of a
value belonging to some solution. These likelihoods are then used to improve the
value selection heuristic and as propagation: if it decreases to zero, the value is

discarded from the domain. However, the integration of this kind of propagation
with common local propagation algorithms is not explored in that paper.

6 Conclusion

In this paper we presented an approach that incorporates look ahead informa-
tion for directing backtracking search, and suggested that this could be largely
done at no extra cost by taking advantage of the work already performed by
singleton consistency enforcing algorithms. We described how such a framework
could extend existing SC and RSC algorithms by requiring only minimal modi-
�cations. Additionally, a less expensive form of SC was revisited, and a new one
proposed which involves revising only a subset of variables. Empirical tests with
two common benchmarks and with randomly generated CSPs showed promising
results on instances near the phase transition. Finally, results were analysed and
matched against those previously obtained by other researchers.

There are a number of open questions and future work directions. As dis-
cussed in the previous section, tests which use singleton consistency on a subset
of variables de�ned by its cardinality were not consistently better or worse than
the others, but may be very bene�cial sometimes. We think this deserves more
investigation, namely testing with more structured problems, using a distinct
selection criteria (other than domain cardinality), and selective performing sin-
gleton consistency less often by reusing previously computed information (in the
info table).

The most promising direction for future work is improving the FF and BP
measures. Look-ahead heuristics presented above use rather naive estimation of
number of solutions for a given subproblem compared to, for example, the κ
measure introduced in [10], or the probabilistic inference methods described in
[13]. The κ measure, for example, takes into account the individual tightness of
each constraint and the global density of the constraint graph. Their work shows
strong evidence for best performance of this measure compared with standard
FF heuristics, but also point out that the complexity of its computation may
lead to suboptimal results in general CSP solving (the results reported are when
using forward-checking). Given that we perform a stronger form of propagation
and have look-ahead information available, the cost for computing κ may be
worth while. We intend to investigate this in the future.

Other improvements include the use of faster singleton consistency enforcing
algorithms [1,4], which should be orthogonal to the results presented here, and
the use of constructive disjunction during the maintenance of SC, by pruning
values from the domains of a variable that does not appear in the state of the
problem for all values of another variable.

We think the results obtained so far are quite promising and justify further
research along the outlined directions.

References
1. Roman Barták and Radek Erben. A new algorithm for singleton arc consistency.

In Valerie Barr and Zdravko Markov, editors, Proceedings of the Seventeenth Inter-
national Florida Arti�cial Intelligence Research Society Conference (FLAIRS'04),
Miami Beach, Florida, USA. AAAI Press, 2004.

2. C. Bessiére and J-C. Régin. Arc consistency for general constraint networks: pre-
liminary results. In Proceedings of IJCAI'97, pages 398�404, Nagoya, Japan, 1997.

3. Christian Bessière and Romuald Debruyne. Theoretical analysis of singleton arc
consistency. In Proceedings of ECAI'04, 2004.

4. Christian Bessière and Romuald Debruyne. Optimal and suboptimal singleton arc
consistency algorithms. In Proceedings of IJCAI'05, 2005.

5. Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard
problems are. In Proceeding of IJCAI'91, pages 331�340, 1991.

6. Joseph Culberson. Graph coloring resources. on-line.
http://web.cs.ualberta.ca/ joe/Coloring/Generators/generate.html.

7. Romuald Debruyne and Christian Bessière. Some practicable �ltering techniques
for the constraint satisfaction problem. In Proceedings of IJCAI'97, pages 412�417,
1997.

8. Dotu, del Val, and Cebrian. Redundant modeling for the quasigroup completion
problem. In ICCP: International Conference on Constraint Programming (CP),
LNCS, 2003.

9. Pieter Andreas Geelen. Dual viewpoint heuristics for binary constraint satisfaction
problems. In Proceedings of ECAI '92, pages 31�35, New York, NY, USA, 1992.
John Wiley & Sons, Inc.

10. I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proceedings of AAAI'96, volume 1, pages 246�252, 1996.

11. Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and TobyWalsh.
Random constraint satisfaction: Flaws and structure. Constraints, 6(4):345�372,
2001.

12. R. M. Haralick and G. L. Elliott. Increasing tree search e�ciency for constraint
satisfaction problems. Arti�cial Intelligence, 14:263�313, 1980.

13. Kalev Kask, Rina Dechter, and Vibhav Gogate. New look-ahead schemes for con-
straint satisfaction. In Proceeding of AMAI'04, 2004.

14. Kautz, Ruan, Achlioptas, Gomes, Selman, and Stickel. Balance and �ltering in
structured satis�able problems. In Proceedings of IJCAI'01, 2001.

15. Christophe Lecoutre and Stéphane Cardon. A greedy approach to establish sin-
gleton arc consistency. In Leslie Pack Kaelbling and Alessandro Sa�otti, editors,
Proceedings of IJCAI-05, pages 199�204. Professional Book Center, 2005.

16. Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Arti�cial In-
telligence, 25:65�74, 1985.

17. Patrick Prosser, Kostas Stergiou, and Toby Walsh. Singleton consistencies. In Rina
Dechter, editor, Proceeding of CP'00, volume 1894 of Lecture Notes in Computer
Science, pages 353�368. Springer, 2000.

18. Philippe Refalo. Impact-based search strategies for constraint programming. In
Mark Wallace, editor, Proceedings of CP'04, volume 3258 of Lecture Notes in Com-
puter Science, pages 557�571. Springer, 2004.

19. Paul Shaw, Kostas Stergiou, and TobyWalsh. Arc consistency and quasigroup com-
pletion. In Proceedings of ECAI'98 workshop on non-binary constraints, March 14
1998.

